CHAPTER XIII
PROPELLERS

13:0. In this chapter we consider the elementary theory of the screw
propeller, and endeavour to show what assumptions are usually made in
arriving at methods for numerical calculation.

i3-1. Propellers. A propeller consists of a certain number of blades
rotating about an axis.

Fiq. 13-1.

Propellers are designed to exert thrust to drive the aircraft forward. If
T is the thrust in the direction of the axis of rotation, 2 the angular speed
of the propeller shaft, @ the torque exerted by the engine and V the forward
speed in the direction of the axis of rotation, the work done per unit time by the
engine is Q2 and by the propeller is V. Thus a propeller converts torque
power into thrust power and the efficiency is '

v
=00
Thrust is obtained by proper shaping of the blades, which are in fact twisted
aerofoils.

Rvery point of a blade lies on a circular cylinder whose axis is the axis of
rotation, and therefore as the aircraft advances each point describes a helix
or spiral curve on the cylinder on which that point always lies. Of these
cylinders there is one of maximum radius. The point of the propeller blade
which lies on this cylinder is the &p, E in fig. 13+1, of the blade. From the tip £
we can draw a perpendicular OF to the axis of rotation. This line may be
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1313 PROPELLERS c 231

called the axis of the blade. The section of the cylinder by the plane through OF
perpendicular to the axis of rotation is called the propeller disc, or simply. the -
disc. | :

If we take a point P on OF such that OP = r and describe a cylinder whose
axis is the axis of rotation and whose radius is OP, the points of the surface
of the blade which lie on this cylinder will constitute a curve resembling an
aerofoil profile ; the totality of such curves defines the shape of the blade. It
is, however, customary to define the shape of the blade by plane sections.
Thus at P the section of the blade will be that made by the plane through P
perpendicular to the blade axis, giving, for example, the profile marked 4B in
fig. 13-1. Such a section is called a blade profile. ' h

The portlon of a blade between the blade profiles at distances r and 7 + dr
from the axis of rotation is called a blade element.

13:2. How thrust is developed Each blade element behaves like an
aerofoil and undergoes lift and drag, and of course leaves a wake behind as it
moves. In the present section we shall omit all consideration of the velocity
induced by the wake as we are here concerned only with a main principle.

. F1e. 13-2.

" Fig. 13-2 shows the blade element one of whose bounding profiles is the _.

blade profile of fig. 13-1.

We now mtroduce two assumptions which will be retained throughout this
chapter.

Assumption 1. The aircraft is moving in the direction of the axis of rotation

of the propeller.
This is only rigorously true for a certain particular incidence of the main

lifting system.,

- Assumption IL. Every point of the blade element between the planes
7 and 7 + dr has, due to the rotation, a velocity 7£2.

This is clearly the more neatly true, the greater the value of 7.

The resultant velocity is then W, where W2 = V2 + 7302,

If then the blade profile is disposed as in the figure it will undergo a lift
dL perpendicular to W, and a drag dD opposed to W,
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If B is the angle which W, makes with the direction of 7 the blade element
has a thrust in the direction of V of amount

(1) dT = dL cos B — dD sin §,
and the whole blade undergoes a forward thrust equal to the sum of the d7'

arising from its various elements.

At the same time there is a torque

(2) dQ = r(dL sin B + dD cos B)
opposing the rotation of the blade, and the sum of the d@ is the total torque
which the engine must exert to turn the blade.

It appears from this elementary exposition that, if R is the radius of the
propeller disc, the maximum speed of a blade profile is ./ (V2 + R20%) and that,
if compression waves are not to develop, this maximum must be kept below
the speed of sound (see 15-5). This places a limitation on the radius of the
propeller disc when maximum values of ¥ and Q are assigned. Again, in order
that the speed of sound may be more nearly approached without adverse
effects the tip profiles must be made thin (see 15-7). This is also dynamically
desirable to avoid too great a thickness at the root of the blade which, for
reasons of strength, would be necessary if the blade were unduly massive
towards the tip.

We also note that if Q = 0, then W, = V, 8 = 90° and dQ = rdL. Thus,
if the blade profile is set so that its axis of zero lift is in the direction of V, we
shall have d@ = 0 and there will be no torque on the propeller shaft from this
element. If all the blade profiles are set in this way the propeller is said to be
Jeathered. The feathered attitude is usually a possible setting with propellers of
variable pitch (see 13-42). :

In postulating the existence of lift and drag on the blade elements we are
tacitly assuming that there is circulation round these elements, and therefore

- that the surface of the blade is equivalent to a sheet of bound vortices. These

will give rise to a wake and therefore to induced velocity additional to W,,.
We proceed to discuss the nature of the walke.

13-3. The slipstream. This is constituted by the air which has passed.
through the propeller disc. ' ‘ '

Consider the portion of the blade between P on the blade axis and the tip Z.
This portion behaves as an aerofoil, and, if we adopt the lifting line theory,
from the trailing edge PE there escapes a vortex sheet. As the blade rotates
this sheet assumes a helicoidal or spiral form, as indicated in the figure, and the
slipstream consists of an assemblage of such surfaces, one for each blade. In
the wake of the trailing edge there is therefore a downwash, and just ahead
there is an upwash from the bound vortices. As the air passes through the
propeller disc its axial velocity must be continuous.  The downwash velocity
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at a point of the wake has also a component tangential to the cylinder on
which that point lies and the air in the slipstream is therefore rotating abouts

the line of advance of the air-
craft in -the same sense as the
angular velocity of the propeller.

Ahead of the propeller disc
the bound vortices induce a tan-
gential componentin the opposite
sense, but the undisturbed air
into which the propeller dise is
advancing can. have no axial
rotation, so this must be can-
celled by the velocity induced
by the wake.

The vortex sheet which
springs from the trailing edge of
a blade is unstable and rolls up
into a spiral of concentrated vor-

174

Fia. 13-3 (a).

ticity. In the particular case in which the lift is uniformly distributed along
the blade axis, the vortex system due to the blade will consist of (i) a bound
vortex along the blade axis, (ii) a spiral vortex springing from the tip of the

Fre. 13-3 (b). .

blade, and (iii) a rectilinear vortex
along the part of the axis of rotation
which is on the downstream side of
the disc. (See the frontispiece.)
Fig. 13-3 (b) illustrates the
scheme, and in the case mentioned
the circulation round each part has

“the same value I', say. When the

lift is not uniformly distributed
along the blade axis, the sheet will
still roll up almost immediately into
concentrated vortices * whose cores
will be represented by lines'of
the spiral type (ii) and the axial
type (iii). It is this arrangement
which replaces the horseshoe vor--
tices of the lifting line theory of

aerofoils. The vortex (ii) has been described as spiral in form. This must not

# J. Valensi, Etude de I'air autour d’une hélice, Thése, Paris (1935), has obtained some
beautiful photographs of the vortices and developed a method of obtaining quantitative results

from their measurement.
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be taken to mean that it is a regular helix drawn on a circular cylinder. For
some calculations it is convenient to make that an assumption, but in general
the diameter of the slipstream contracts (see fig. 13:31) as we proceed down-
stream and the slipstream only ultimately assumes the cylindrical form in an
ideal incompressible inviscid fluid.

Observe that if there are several blades,* each will contribute a vortex of the
type (iii) so that in the case of B blades, each with circulation I, the axial vortex
will be of circulation BI".

I3:31. Velocity and pressure in the slipstream. When the propeller

advances with constant velocity V and rotates with constant angular velocity

Q, the motion of the air at a point fixed in space is not steady, the pressure p
and the velocity q depend on the time. If, however, we take a system of axes
of reference fixed in the propeller, and therefore rotating and advancing with
it, the motion is steady with regard to these axes. If q’ is the air velocity
measured ‘with respect to these moving axes, Bernoulli’s equation (see 2-11)
becomes

(1) Z,) + %_q’z — %.927'2 = cons‘bant,
P

the last term on the left representing the potential energy of the fictitious
field of force introduced by the rotation. If we denote by (g,, ¢,, ¢;) the axial,
radial, and tangential components of the absolute air velocity q, the components
of the relative velocity will be (¢,, ¢,, ¢, — 7£2) and therefore

¢* = ¢+ ¢.° + (@ ~ QP = ¢ + 0 - 20
and so (1) becomes

@) P, 1 — qo8 = constant,
P .

where ¢ is now the absolute air speed.

Fig. 13-31 shows schematically a section through the centre O of the propeller
disc DY, the hatched part representing the slipstream, the point of view being
that' of an observer moving with the axes of reference. Outside the slipstream
the motion is everywhere irrotational. Far ahead of the propeller the air
appears to form a uniform stream — V, as it also does far astern except en the
slipstream.

The slipstream itself contracts from its greatest diameter DD’ at the dise,
and asymptotically approaches the form of a circular cylinder typified by the
diameter GG' in fig. 13-31.

1t is useful to regard the air ahead of the disc and bounded by the surface
whose sections are indicated by 4D@, 4’D'6" in fig. 13-31 as an * extension

* See the frontispiece. The photograph was taken in water in a cavitation tank with the
propeller axis horizontal. The vortices are made visible by the oavwa.tlon bubbles (which contain
water vapour) escaping from the blades.
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13-31] VELOCITY AND PRESSURE IN THE SLIPSTREAM 235

of the slipstream, but it should be carefully noted that in crossing say DG from
inside to outside the slipstream there is an abrupt change of velocity so that-
the boundary of the actual slipstream is a vortex sheet, whereas in crossing AD

»

Fra. 13-31.

there is no abrupt change and therefore the boundary of the above, “‘ extension ”
is not a vortex sheet. o

Now consider a point P of the slipstream. Let us put ¢, = 7w, so that w
is the angular speed of a plane containing the air particle which is at P, and the
axis of propeller rotation. Then outside the slipstream w = 0, for the motion is
irrotational and there can therefore be no circulation. Thus (2) can be written

3) Y 1¢? — 1w = 1—7-+ 372
P 3

where IT is the pressure at infinity ahead of the disc; and so (3) is valid

throughout the field of flow. |
Finally, if the projection of q on the plane of the section of fig. 13-31is

denoted by (V + v) we have ¢% = (¥ 4 )2 + r%w? and therefore ‘

"This is an exact equation which applies throughout the fluid.

If we describe the position of P by cylindrical coordinates (r, 6, z) where 2
is the distance downstream from O, the pressure p and the velocities v, w are
functions of all three coordinates. : -

13-4. Interference velocity. The trailing vortex system described in
13-3 gives rise to induced velocity, known as enterference velocity.

This velocity will have three components, axial, radial, and tangential, the
latter term referring to the tangent to that circular section of the slipstream
which passes through the point which we are considering, ‘
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Assumption 111, The radial component may be neglected.

In the plane of the disc, on the downstream face, the interference veloecity
will, see fig. 13-3 (a), have its axial component opposite to the direction of
advance of the propeller and its tangential component in the same sense as the
rotation.*  Thus relatively to the propeller the total axial component is
increased to, say, V(1 + a), and the total tangential component is decreased to,
say, 82(1 — a'). The numbers o and a’ are called inferference Sactors. For a
propeller they are both positive.

Now consider points Py, P, at radial distance r just ahead and just astern
of the disc. By symmetry the bound vortices induce no axial velocity at these
points, so the total induced axial velocity is the same at P, and P, and may be
written '

v=alV = -%—7)1.
If the bound vortices induce angular velocity ' at P, by symmetry, they
must induce angular velocity — «’ at P,. Thus the total induced angular
velocity can be written as 4w, + o’ at P, and fw, — o’ at P,, But P, is in
the irrotational flow and therefore w, — w’ = 0. Therefore the total angular
velocity induced at P; by both bound and free vortices is w;, = 2w’ = 20'R2.

13-41. The force on a blade element. To calculate the force we
introduce : '

Assumption IV, Bach blade element may be treated as a two-dimensional
aerofoil moving with the relative velocity calculated at the downstream face
of the dise.

The relative velocity here referred to is the velocity whose axial and radial
components at distance r are V(1 + a), 72(1 — a).
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Fic. 13+41.

’

Let 4B be the chord of the blade element.

The angle & which 4B makes with the direction of the tangential velocity
is called the blade angle. If ¢ is the angle which the relative air velocity W
makes with the tangential velocity the incidence is @ = # — ¢, and the cor-

* On the upstream face the tangential component vanishes, see 13-3. The axial component
is the same on both faces. ‘
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13-41] THE FORCE ON A BLADE ELEMENT 237 -

responding lift and drag coefficients may be found from the graphs apprbpriate
to the blade profile. If ¢ is the chord, the lift and drag in the blade element are

dL = C; . Wi dr, dD = Cp.}pWicdr,
where C, and Cp are the lift and drag coefficients of the blade element.
If we now write

(1) ‘C'T=Cbcos¢—'01)sinq5, OQ:C‘LSin¢+C’Dcos¢,

" we get for the thrust and torque due to the blade element

AT® = Cp . 1pWecdr, dQ® = Cq. }pWierdr.
If there are B blades the contributions of all the blade elements at distance 7
will be
dT, = BATW, dQ, = Bd@™.
The projected area of all the blade elements on their chords is Be dr and the
area of the annulus between radii » and 7 + dr is 2mrdr. The ratio of these
areas is termed the solidaty of the blade element and is denoted by o = Bc/ (2mr).

Also, from fig. 13-41,

7

(2) tan(ﬁ—rg—'i_a//)
and therefore

(3) d;'# Cp . mpor V(1 + a)? cosect ¢ = Cp . mpor® 22 (L — a')* sec? ¢,

w

(4) dg’ = Cy.mpor?V3(1 + a)? cosec? ¢ = Cg . mport§2(1 ~ ') sec® §.

13-42. Characteristic coefficients. If we write

(].) TT = TEPR‘le’ Q?‘ = KEPRSQZ, g =

’

byl =

equations (3) and (4) of 13-41 become

(2) brg - Cpmoé3(l — a')2sec? ¢, d Comat(l — a')? sec® &,

dé . d¢é
The thrust and torque on the whole propeller are then
3) . T =7pRY®, Q= xpRS2, where
1dr 1dx :
4 _ I e gt = j I g .
“ =z <la®

In terms of %, the number of revolutions per unit time, and D, the diameter
of the disc, we define the rate of advance coefficient
: Vv =V 14
® T = R T ™

the last term being obvious from an inspection of fig. 13:41.
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The efficiency of the propeller is then

v Jr

6 e I -,

() K QL2  wie

For a given propeller the geometrical quantities o, # are known for each
value of £, and also the aerodynamic quantities €, Cp for each value of «.
Thus, if we know the interference factors a,a’ (see 13-7), we can calculate
é, J, Cp, Cg and so obtain the differential coefficients dr /d€, dic,/d¢ from (2).

Graphical integration will now give the characteristic coefficients =, x and
therefore v for different values of J. Typical graphs are shown in fig. 13-42.
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Fra. 13-42.

We observe from (6) that if = vanishes for a value J 1 of J, 5 will also vanish
for this value, and the graph shows that x vanishes for a value J. sof J.

If J = Jy, there is no thrust and the propeller is feathered.

If J,.<J < J, 7 and therefore the thrust is negative but the torque
remains positive. Thus the propeller is acting as a brake.

If J > J,, both thrust and torque are negative and the propeller acts as
a windmall, i.e. supplies power instead of consuming it. The efficiency is then
1/7 taken positively.

If J = J, the propeller is capable of autorotation, i.e. of rotating without
demanding power from the engine, as in the autogyro.

With regard to J;, if the propeller makes one revolution in & unit of time it
advances the distance V = J,D. The length J,D is the experimental mean
pitch, and is the distance the propeller advances per complete turn of the blades
when no thrust is exerted. :

In variable pitch propellers it is possible to rotate the blades, each about the
blade axis, and thus obtain a different experimental mean pitch for each setting.
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This turning of the blades will of course alter the incidence of every blade

element.

135. Infinitely many blades. If we suppose the propeller to have
an infinite number of equal blades each carrying an infinitesimal Pproportion
of the total thrust, the situation undergoes a notable simplification in that the -
principle of momentum is easily applied. Referring to fig. 13-31 we shall
consider the air which occupies the slipstream and its upstream extension ”
and bounded by the section 44, GG, the former being so far upstream that .
the velocity is ¥ parallel to the axis of rotation and the pressure is I7, the latter
being a long way downstream at a point where the slipstream has become
sensibly cylindrical. To this part of the slipstream we apply the suffix uniby
5o that the quantities p, w, v are denoted by p;, wy, ¥1, and are functions of r
only and not of the azimuth 6. We denote by 2R, the diameter of this part of
the slipstream. The forces acting on the body of fluid here considered are
(i) the thrust 7', (ii) the pressure thrust due to uniform pressure I over 44’

.+ (iii) the pressure thrust due to p, over G, (iv) the pressure thrust due to

pressure p over the curved boundary AG, A’'G'. A uniform pressure —JJ
applied over the whole boundary yields no resultant force and, supposing this =
to be applied, (ii) is eliminated and (iii) and (iv) are due to pressures p, —ITand' .
p—IT respectively. If we denote by X the component of the new (iv) in the
direction of 7', we can equate the resultant force to the net flux of momentum
out of the volume 44’ GG". o

Thus we get

Ry Ry
I+ X~ J‘ (py — IT) 2 dr = pJ Qo dr(V + o1)?
0 0
1y
- ijo Oy dr(V + vy),

the second integral on the right giving the volume flux out of GG and therefore
by the equation of continuity the corresponding flux at 44’. Thus, taking
the value of p, — II from 13:31 (4) we get _ : :

R
@ . T+ X =2 [Pe@ - e + ol

0

In 13-51 we shall prove that X = 0.
To evaluate p, observe that in the cylindrical part of the slipstream,

resolving radially,

® s — v,
which means that p, decreases as we move towards the axis of rotation, and.
since p, = IT when r = B, we have :

: . Ry
(4) p ==~ pj T, 2 dr.




240 THE ENCASED PROPELLER [13-51

13-51. The encased propeller. If we consider the propeller with
infinitely many blades to be operating in an infinite coaxial cylindrical tube of
diameter 2%, equation 13-5 (1) will still hold. Outside the cylindrical part of
the slipstream the velocity will be constant and equal to, say, V — v,/, the
fact that it is less than ¥ following from the equation of continuity, If we
consider the air outside the slipstream and its  extension ”, we shall have
by the same argument as that which yields 135 (1)

77 7 77277
) G V-u
\\\\2&‘\\
AN
GI
2
2777, 7z 7 7. 7Z 2
Fia. 1351,
B 7
1) X + j (p) — II)2nrdr = 27rp'|. (V — o))v,r dr,
. R, Ry

where p," is the pressure over the section outside the slipstream. Now by
Bernoulli’s theorem (or by 13-31 (4), noting that w = 0, v = ~ v,)

. I = po)/(V - $vy).
Therefore from (1), since v, is constant,

h
2 . X = 2"PI — Jotrdr = - dmp(Rt — Rp)ns,
Ry '

and thus it appears that X is negative, i.e. opposes the thrust.
Now by the equation of continuity, if 2R, is the diameter 44’ of the exten-
sion of the slipstream in fig. 1351, we have

7B ~ BV =a(h? - R2(V - vy)

and therefore v = (B2 — R V/(k2 — Ry,
(R — R
so that from (2) X = — InpV2 k%Z—R‘:“’

and when %A—> e, ie. when the casing is absent, X — 0, which proves the
assertion made in 13-5.

The problem envisaged in this section may be regarded as approximating to
the case of a propeller in a wind tunnel of circular section.
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13-6] FROUDE’S LAW A 241

13-6. Froude’s law. Consider a propeller with infinitely many blades
and introduce ‘
Assumption V. The contraction of the slipstream may be neglected.

Fia. 13-6.

The diagram now shows a slipstream of radius R, which is cylindrical through-
out. As before, 44’, GG’ represent cross-sections of the * extension ” and the
slipstream at infinite distance from the dise. On GG’ at radial distance r the
axial velocity will be ¥ + v, so that v, is the velocity induced by the trailing
vortex system constituting the slipstream. Similarly, w, is the angular velocity
induced at the same point by the trailing vortex system. Thus, at a point of
GG’ each half of the infinite trailing vortex system induces the velocities
3v;, $w,.  Thus the corresponding velocities induced at a point of the disc at
radius # are 3o, and jw,. . R
This is Froude’s law.

13-7. Interference factors. Considering still the propeller with in- -
finitely many blades we introduce o

Assumption VI. The induced angular velocity is insufficient to produce
appreciable variation of pressure across a section of the slipstream.

With this assumption 13-5 (4) shows that p, = II.

Now the flux of mass through the annulus of the disc comprised between
radii 7 and 7 + dr is 2zr dr p(V + aV). Therefore if 7', and d¢), are the thrust
and torque on this annulus, ' S

AT, = 2urdrp(V + aV)vy, dQ, =7 . 2xmrdrp(V + aV)wy?,
by the principles of linear and angular momentum. Therefore

(1) ‘dg"‘, = dmrpV2a(l + a), % = 4m3p V(1 + a)a’,

since from 13-4, v, = 24V, w; = 20’82

Assumption VII. The formulae (1) can be applied to a propeller with a

finite number of blades.
q M.T.A.
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If we equate the values (1) to the corresponding values of 13-41 (3), (4), we
get .
a . OT o a’ CQ a
l+a 2(1-cos2d) 1-a 282

and from 13-42 ()

l+a d

tangb— o

These three equations then determine a, o', and ¢. Graphical methods
can be applied to finding the solution,

_ EXAMPLES XIII
1. If kp = T/pn*D*, kg = Q[pn?DP, show that, with the definitions of 13-42,

2 2

]GT = ZT, kQ = g‘ K
Show also that the efficiency is Jkp/27ky.
2. If T, Q, P are the thrust, torque and power of & propeller, show that

1 mir P4
T = 75-132172 JT
1 '7r51< Vs
~EEr =T

1 ik w5 V5
P = __,s_Rzys_ L

8. Prove that the free vortex lines of the absolute motion coincide with the
streamlines of the relative motion in the slipstream.

4. Prove that the totél circulation round the blade elements at radius 7 is
WUGLTW.

5. Show that the loss of energy for the blade elements at radius # is, in unit
time,
=(l - a)R2dQ, ~ (1 + a) VdT,.
Hence prove that
dE = $CppW3Bc dr,
which is the work done against the drag of the blade elements in unit time,

8. If is the angle between the apparent and effective relative velocities at the
blade elements at radius r, prove that

s g ™ sond)
= Bnr \sin ¢ cosg/’
7. If u, is the efficiency of the blade elements at radius #, defined by
_ VT,
Ny = .Q err H
1 ~al-ctang _Op
T T +Ecot¢,wheree_a:.

prove that Ny =

" where
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8. If a free vortex of circulation I'(r} issues from a point P, at radial distance 7,
of the disc and proceeds downstream as a regular helix, prove that, at the point P’
of the disc at radial distance 7', and at angular distance 8 from P, the components of
velocity induced by the helical vortex are :

P(7) J. I3[y — 7' cos (6 + B)]db,

g = —— 47T Qj'lsr ——-rcos(ﬁ-{-ﬁ)—r@sm(ﬁ-{-ﬁ)]d@

I'nv

o = 0 ﬁjb I3[ sin (8 + B) ~ 18 cos (0 + §)]db,

" where

=2 4 12— 2 cos (0 + B) + VIOYQ,

9. Draw graphs to show, for the propeller with infinitely many blades, (i) the
axial incremental speed, and (i) the incremental angular speed w at radius #, in
proceeding from far ahead to far astern of the propeller.

Add to (ii) a graph to show the part due to the bound vortices.

10. In a propeller with infinitely many blades, prove that the pressure on the
downstream face of the disc exceeds the pressure on the upstream face by
pvy(V + 4v,), where v, is the axial incremental velocity far down in the slipstream
and the other incremental velocities are neglected.

Prove that the efficiency is

()
NCTZ2

11, In a propeller with infinitely many blades, prove that the pressure ]ump in
passing through the disc is at radius »

prPw (9 - jw),
where ¢rw is the tangential velocity at radius 7.




