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SUMMARY 

A simplified analysis is made of the velocity and deceleration 

history of ballistic missiles entering the earth's atmosphere at high 

supersonic speeds. It is found that, in general, the gravity force is 

negligible compared to the aerodynamic drag force and, hence, that 

the trajectory is essentially a straight line. A constant drag 

coefficient and an exponential variation of density with altitude are 

assumed and generalized curves for the variation of missile speed 

and deceleration with altitude are obtained. A curious finding is 

that the maximum deceleration is independent of physical 

characteristics of a missile (e. g., mass, size, and drag coefficient) 

and is determined only by entry speed and flight-path angle, 

provided this deceleration occurs before impact. 

The results of the motion analysis are employed to determine 

means available to the designer for minimizing aerodynamic 

heating. Emphasis is placed upon the convective-heating problem 

including not only the total heat transfer but also the maximum 

average and local rates of heat transfer per unit area. It is found that 

if a missile is so heavy as to be retarded only slightly by 

aerodynamic drag, irrespective of the magnitude of the drag force, 

then convective heating is minimized by minimizing the total shear 

force acting on the body. This condition is achieved by employing 

shapes with a low pressure drag. On the other hand, if a missile is 

so light as to be decelerated to relatively low speeds, even if acted 

upon by low drag forces, then convective heating is minimized by 

employing shapes with a high pressure drag, thereby maximizing 

the amount of heat delivered to the atmosphere and minimizing the 

amount delivered to the body in the deceleration process. Blunt 

shapes appear superior to slender shapes from the standpoint of 

having lower maximum convective heat-transfer rates in the region 
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of the nose. The maximum average heat-transfer rate per unit area 

can be reduced by employing either slender or blunt shapes rather 

than shapes of intermediate slenderness. Generally, the blunt shape 

with high pressure drag would appear to offer considerable promise 

of minimizing the heat transfer to missiles of the sizes, weights, and 

speeds of usual interest. 

 

INTRODUCTION 

For long-range ballistic trajectories one of the most difficult 

phases of flight the designer must cope with is the re-entry into the 

earth's atmosphere, wherein the aerodynamic heating associated 

with the high flight speeds is intense. The air temperature in the 

boundary layer may reach values in the tens of thousands of 

degrees Fahrenheit which, combined with the high surface shear, 

promotes very great convective heat transfer to the surface. 

Heat-absorbent material must therefore be provided to prevent 

destruction of the essential elements of the missile. It is 

characteristic of long-range rockets that for every pound of material 

which is carried to "burn-out," many pounds of fuel are required in 

the booster to obtain the flight range. It is clear, therefore, that the 

amount of material added for protection from excessive 

aerodynamic heating must be minimized in order to keep the 

take-off weight to a practicable value. The importance of reducing 

the heat transferred to the missile to the least amount is thus 

evident. 

For missiles designed to absorb the heat within the solid surface 

of the missile shell, a factor which may be important, in addition to 

the total amount of heat transferred, is the rate at which it is 

transferred since there is a maximum rate at which the surface 

material can safely conduct the heat within itself. An excessively 

high time rate of heat input may promote such large temperature 

differences as to cause spalling of the surface, and thus result in 

loss of valuable heat-absorbent material, or even structural failure 

as a result of stresses induced by the temperature gradients. 

For missiles designed to absorb the heat with liquid coolants 

(e.g., by transpiration cooling where the surface heat-transfer rate is 

high, or by circulating liquid coolants within the shell where the 
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surface heat-transfer rate is lower), the time rate of heat transfer is 

similarly of interest since it determines the required liquid pumping 

rate. 

These heating problems, of course, have been given 

considerable study in connection with the design of particular 

missiles, but these studies are very detailed in scope. There has 

been need for a generalized heating analysis intended to show in 

the broad sense the means available for minimizing the heating 

problems. Wagner, reference 1, made a step toward satisfying this 

need by developing a laudably simple motion analysis. This 

analysis was not generalized, however, since it was his purpose to 

study the motion and heating of a particular missile. 

 

It is the purpose of this report to simplify and generalize the 

analysis of the heating problem in order that the salient features of 

this problem will be made clear so that successful solutions of the 

problem will suggest themselves. 

A motion analysis, having the basic character of Wagner's 

approach, precedes the heating analysis. The generalized results of 

this analysis are of considerable interest in themselves and, 

accordingly, are treated in detail. 

 

ANALYSIS 

MOTION OF THE BODY 

Consider a body of mass m entering the atmosphere from great 

height. If, at any altitude y, the speed is V and the angle of approach 

is θ  to the horizontal (see sketch), the parametric equation of 

motion can be written
2
 

                                                           
2
 Properly, the analysis should consider those effects resulting from the fact that the 

earth is a rotating sphere, but since the altitude range for which drag effects are 
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where 

 DC  drag coefficient, dimensionless 

 V speed, ft/sec, 

 A reference area for drag evaluation, sq. ft, 

 m mass of the body, slugs, 

ρ  mass density of the air, slugs/ 3ft  

g acceleration of gravity, 2ft/sec  

x, y horizontal and vertical distance from the point 

of impact with the earth, ft 

θ  angle between the flight path and the 

horizontal, deg 

(See Appendix A for complete list of symbols.) 

In general, the drag coefficient varies with Mach number and 

Reynolds number, while the density and, to a very minor extent, the 

acceleration of gravity vary with altitude. Hence it is clear that 

exact solution of these equations is formidable. Let us first, then, 

consider the following simplified case: 

1. The body descends vertically. 

2. The drag coefficient is constant.
3
 

3. The acceleration of gravity is constant.
4
 

4. The density as a function of altitude is given by the relation 

  ye βρρ −= 0 ,   (2) 

where 0ρ  and β  are constants. This relation is consistent with 

the assumption of an isothermal atmosphere. 

Equations (1) then reduce to the single equation 
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and equation (39 becomes the linear differential equation 
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Performing the integrations, we obtain as the solution of this 
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so that the deceleration becomes, in terms of gravity acceleration, 
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As an example, consider the vertical descent of a solid iron 

sphere having a diameter of 1 foot. For a sphere the drag coefficient 

may be taken as unity, based on the frontal area for all Mach 

numbers greater than about 1.4. In equation (2), which describes 
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the variation of density with altitude, the constants should clearly 

be so chosen as to give accurate values of the density over the 

range of altitudes for which the deceleration is large. It is seen in 

figure 1 that for 

  0034.00 =ρ  3slugs/ft  

and 

  
000,22

1
=β  1ft − , 

which yields 

  000,220034.0

y

e
−

=ρ .   (7) 

The calculated density is in good agreement with the NACA 

standard atmosphere values obtained from references 2 and 3 for 

the altitude range from 20,000 to 180,000 feet. These relations have 

been used in calculating the velocity and deceleration of the sphere 

for various altitudes, assuming vertical entrance velocities of 

10,000, 20,000, and 30,000 feet per second at 40 miles altitude 

which, for these cases, may be considered the "outer reach" of the 

atmosphere. The results of these calculations are presented as the 

solid curves in figures 2 and 3. 

It is seen in figure 3 that for the high entrance speeds considered, 

the decelerations reach large values compared to the acceleration of 

gravity. This suggests that the gravity term in equation (3) may be 

neglected without seriously affecting the results.
5
 When this term 

is neglected the equation of motion becomes 
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is very nearly unity so that the velocity may be written 
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where EV  is the entrance speed. 

By use of equations (9) and (10) the vertical-descent speeds and 

decelerations for the 1-foot-diameter sphere previously considered 

have been calculated for the same entrance speeds. The results are 

shown as the dashed curves in figures 2 and 3. It is seen that these 

approximate calculations agree very well. It is seen that these 

approximate calculations agree very well with those based on the 

more complete equation of motion (eq. (3)). 

The above finding is important, for it indicates that in the 

general case, wherein the body enters the atmosphere at high speed 

at angle Eθ  to the horizontal, the gravity term, provided Eθ  is 

not too small, may be neglected in equation (1) to yield 
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so that the flight path is essentially a straight line (i.e., Eθθ = ), 

and the resultant deceleration equation becomes 
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The altitude 1y  at which the maximum deceleration occurs is 

found from this relation to be 
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If 1y  is positive the velocity 1V  (from eqs. (13) and (15)) at 

which the maximum deceleration occurs becomes 

  EE VevV 61.02/1
1 ≅− − .  (16) 

and the value of the maximum deceleration is 

  
ge

V

g

dt

dV

g

dt

dV

EE

2

sin
2

1max

θβ
=



















−=



















− . (17) 

If equations (13) and (14) are rewritten to make the altitude 

reference point 1y  rather than zero, then 
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and 
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respectively, where y∆  is the change in altitude from 1y . 

Substitution of equation (15) into these expressions can readily be 

shown to give 
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Equations (18) and (19) are generalized expressions for velocity 

and deceleration for bodies of constant drag coefficient and, 

together with equations (15) and (17), can be used to determine the 

variation of these quantities with altitude for specific cases. The 

dependence of )(' yF ∆β  and )('' yF ∆β  on y∆β  is shown in 

figure 4. 

The maximum deceleration and the velocity for maximum 

deceleration as given by equations (17) and (16) apply only if the 

altitude 1y , given by equation (15), is positive. Otherwise the 

maximum deceleration in flight occurs at sea level with the velocity 

(see eq. (13)) 
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and has the value 
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HEATING OF THE BODY 

It was noted previously that for practicable rocket missiles, it is 

vital that the weight of the missile be kept to a minimum. The total 

heat transferred to a missile from the air must be absorbed by some 

"coolant" material. Since this material has a maximum allowable 

temperature, it follows that it can accept only a given amount of 

heat per unit weight. Hence, the total heat input to the missile must 

be kept at a minimum for minimum missile weight. 

Often the coolant material is simply the shell of the missile and 

as such must provide the structural strength and rigidity for the 

missile as well. The strength of the structure is dictated, in part, by 

the stresses induced by temperature gradients within the shell. 

Since these temperature gradients are proportional to the time rate 

of heat input, the maximum time rate of heat input is important in 

missile design. The heating, of course, varies along the surface but, 

since the shell transmits heat along as well as through itself, the 

strength of the structure as a whole may be determined by the 

maximum value of the average heat-transfer rate over the surface. 

This is simply the maximum value of the time rate of heat input per 

unit area. On the other hand, the structural strength at local points 

on the surface may be determined primarily by the local rate of heat 

input. Hence the maximum time rate of heat input per unit area at 

the surface element where the heat transfer is greatest may also be 

of importance in design. 

If liquid cooling is employed, the maximum surface heat 

transfer rates retain their significance but, now, in the sense that 

they dictate such requirements as maximum coolant pumping rate, 

or perhaps shell porosity as well in the case of transpiration cooling. 

Whichever the case, in the analysis to follow, these elements of the 

heating problem will be treated: 

1. The total heat input. 

2. The maximum time rate of average heat input per unit area. 
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3. The maximum time rate of local heat input per unit area. 

Since it is the primary function of this report to study means 

available to the missile designer to minimize the heating problem, 

the analysis is simplified to facilitate comparison of the relative 

heating of one missile with respect to another -- accurate 

determination of the absolute heating of individual missiles is not 

attempted. With this point in mind, the following assumptions, 

discussed in Appendix B, are made: 

1. Convective heat transfer predominates (i e., radiation effects 

are negligible). 

2. Effects of gaseous imperfections may be neglected. 

3. Shock-wave boundary-layer interaction may be neglected. 

4. Reynolds' analogy is applicable. 

5. The Prandtl number is unity. 

 

Total heat input 

The time rate of convective heat transfer from the air to any 

element of surface of the body may be expressed by the 

well-known relation 

  lwrl TTh
dt

dH
)( −= ,   (22) 

where 

 H heat transferred per unit area, 2lb/ftft ⋅ , 

 h convective heat-transfer coefficient, 

Rsecft

lbft
2 °⋅⋅

⋅
 

rT  recovery temperature, °R 

wT  temperature of the wall, °R, 

t time, sec 

and the subscript l denotes local conditions at any element of the 

surface dS. 

It is convenient in part of this analysis to determine the heating 

as a function of altitude. To this end, noting that 
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With the assumption that the Prandtl number is unity, the recovery 

temperature is 
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M Mach number at the altitude y, dimensionless, 

γ  the ratio of specific heat at constant pressure 

to that at constant volume, vp CC / , 

dimensionless 

T static temperature at the altitude y, °R 

so that 
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It is seen that for large values of the Mach number, which is the 

case of principal interest, the third term is large compared to 

reasonably allowable values of wTT − . It will therefore be 

assumed that wTT −  is negligible
6
 so that 
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equation (24) may be written 
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Now the local heat-transfer coefficient lh  is, by Reynolds' 

analogy, for the assumed Prandtl number of unity 

  lllplfl VCCh ρ,,
2

1
= ,   (26) 

where lfC ,  is the local skin-friction coefficient based on 

conditions lρ , lV , etc., just outside the boundary layer. Thus, 

since wr TT −  is essentially constant over the entire surface S, the 

rate of total heat transfer with altitude becomes from equations (23) 

through (26) 

                                                           
6
 It should be noted that without this assumption, the heat-input determination 

would be greatly complicated since the changing wall temperature with altitude 

would have to be considered to obtain the heat input (see e.g., ref. 1). For high speed 
missiles which maintain high speed during descent, the assumption is obviously 

permissible. Even for high-speed missiles which finally decelerate to low speeds, the 

assumption is generally still adequate since the total heat input is largely determined 
by the heat transfer during the high speed portion of flight. 
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The parameter 'fC  is termed "the equivalent friction coefficient," 

and will be assumed constant,
7
 independent of altitude, again on 

the premise that relative rather than absolute heating is of interest. 

With equations (2) and (13), then, equation (27) is written 
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Comparison of equation (29) with equation (14) shows that the 

altitude rate of heat transfer is directly proportional to the 

deceleration, so that 
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and therefore the maximum altitude rate of heat transfer occurs at 

the altitude 1y  (see eq. (15)) and is given by 
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It follows, of course, that the altitude rate of heat transfer varies 

with incremental change in altitude from 1y  in the same manner 

as deceleration, and thus (see eq. (19)) 
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The total heat input to the body at impact follows from equation 
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 This assumption would appear poor at first glance since the Mach number and 

Reynolds number variations are so large. Analysis has indicated, however, that the 
effects of Mach number and Reynolds number variation are nearly compensating. 

The variation in 'fC  for typical conical missiles was found to be, at most, about 50 

percent from the maximum 'fC  in the altitude range in which 80 percent of the 

heat is transferred. 
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(29) (integrating over the limits ∞≤≤ y0 ) and is 

  















−=

−
E

AD

m

C

E
D

f
emV

AC

SC
Q

θβ
ρ

sin2

0

1
'

4

1
. (33) 

The impact velocity, 0V  (the velocity of body at y = 0), is 
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so that equation (33) may be written in the alternative form 
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Maximum time rate of average heat input per unit area. 

To determine the time rate of average heat transfer per unit area, 

equations (25), (26), and (28) with equation (22) may be shown to 

give 
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The maximum time rate of average heat transfer per unit area is 

found from this expression to be 
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and it occurs at the altitude 
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where the velocity is 

  EE VeVV 72.03/1
2 ≅= − .  (39) 

As with altitude rate of heat transfer, it can be shown that 
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.  (40) 

Equations (37), (38), and (39) apply if the altitude for maximum 

time rate of average heat transfer per unit area occurs above sea 

level. If 2y , by equation (38), is negative, then this rate occurs at 

sea level and is, from equation (36), 
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Maximum time rate of local heat input per unit area. 

The elemental surface which is subject to the greatest heat 

transfer per unit area is, except in unusual cases, the tip of the 

missile nose which first meets the air. It seems unlikely that a 

pointed nose will be of practical interest for high-speed missiles 

since not only is the local heat-transfer rate exceedingly large in 

this case, but the capacity for heat retention is small. Thus a truly 

pointed nose would burn away. Body shapes of interest for 

high-speed missiles would more probably, then, be those with nose 

shapes having nearly hemispherical tips. The following analysis 

applies at such tips. 

It is well known that for any truly blunt body, the bow shock 

wave is detached and there exists a stagnation point at the nose. 

Consider conditions at this point and assume that the local radius of 

curvature of the body is σ  (see sketch). The bow shock wave is 

normal to the stagnation streamline and converts the supersonic 

flow ahead of the shock to a low subsonic speed flow at high static 

temperature downstream of the shock. Thus, it is suggested that 

conditions near the stagnation point may be investigated by treating 

the nose section as if it were a segment of a sphere in a subsonic 

flow field. 

The heat-transfer rate per unit area at the stagnation point is 

given by the relation 

  
σ

)( rwrrs TTkNu

dt

dH −
−= , 

where rk  is the thermal conductivity of the gas at the recovery 
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temperature (i.e., total temperature) rT , and rNu  is the Nusselt 

number of the flow. If the flow is assumed to be laminar and 

incompressible,
8
 rNu  is given, according to reference 5, by the 

relationship 

  5/22/1
PrRe934.0 σ=rNu . 

We retain the assumption that the Prandtl number is unity, note that 

rV µσρσ /Re = , and substitute equation (25) into equation (42) to 

obtain 

  247.0 V
V

dt

dH rs

σ
µρ

= .  (43) 

Now it is well known that at the high temperatures of interest here, 

the coefficient of viscosity rµ  varies nearly as the square root. of 

the absolute temperature and is given by the relation 

  
2/181031.2 rr T−×=µ . 

If this expression is combined with equation (25) (neglecting wT ), 

equation (43) may then be written
9
 

  36108.6 V
dt

dH s

σ
ρ−×= .  (44) 

which, when combined with equations (2) and (13), becomes 
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2306

0

108.6 . (45) 

The maximum value of dtdH s /  can readily be shown to be 
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
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
 (46) 

which occurs at the altitude 

  
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log
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3 ,  (47) 

corresponding to the velocity 

  EE VeVV 85.06/1
3 −≅= − .  (48) 

The manner in which the heat-transfer rate per unit area at the 

stagnation point varies with incremental change in altitude from 

3y  can be shown to be 

                                                           
8
 The assumption of constant density certainly may invalidate this analysis for any 

quantitative study of the relatively "cold-wall" flows of interest here. For the 

purpose of studying relative heat transfer it should, however, prove adequate. 
9
 The constant in equation (44) is obtained with the assumption of incompressible 

flow in the stagnation region. The effects of compressibility and dissociation of the 

molecules of air in the region tend to increase the value of the constant by as much 

as a factor 2 in the speed range of interest in this report. For the comparative purpose 
of this report it is unnecessary to take these effects into account. 
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The dependence of )(''' yF ∆β  on y∆β  is shown in figure 4. 

Equation (46) applies only if 3y  is above sea level. If 3y , 

from equation (47), is negative, then the maximum heat transfer 

rate per unit area at the stagnation point occurs at sea level and is 
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(50) 

 

DISCUSSION 

MOTION 

The motion study shows some important features about the 

high-speed descent of missiles through the atmosphere. The major 

assumptions of this analysis were that the drag coefficient was 

constant and the density varied exponentially with altitude. It was 

found that the deceleration due to drag was generally large 

compared to the acceleration of gravity and, consequently, that the 

acceleration of gravity could be neglected in the differential 

equations of motion. The flight path was then seen to be a straight 

line, the missile maintaining the flight-path angle it had at entry to 

the atmosphere. 

For most missiles, the maximum deceleration will occur at 

altitude. One of the most interesting features of the flight of such a 

missile is that the maximum deceleration is independent of physical 

characteristics (such as mass, size, and drag coefficient of the 

missile), being dependent only on the entry speed and flight-path 

angle (see eq. (17)). The missile speed at maximum deceleration 

(eq. (16)) bears a fixed relation to the entrance speed (61 percent of 

entrance speed), while the corresponding altitude (eq. (15)) 

depends on the physical characteristics and the flight-path angle but 

not on the entrance speed. It is also notable that for a given 

incremental change in altitude from the altitude for maximum 

deceleration, the deceleration and speed bear fixed ratios to the 

maximum deceleration and the entry speed, respectively (see fig. 4 
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and eqs. (19) and (18)), hence, the deceleration and speed variation 

with altitude can readily be determined. 

If the missile is very heavy, the calculated altitude for 

maximum deceleration (eq. (15)) may be fictitious (i.e., this altitude 

is negative) so the maximum deceleration in flight, which occurs 

just before impact at sea level, is less than that calculated by 

equation (17) and is dependent on the body characteristics as well 

as the entry speed and flight-path angle (see eq. (21)). However, the 

variation of speed and deceleration with altitude from the fictitious 

altitude given by equation (15) can still be obtained from figure 4. 

 

HEATING 

Total heat input. 

In the heating analysis, a number of simplifying assumptions 

were made which should limit its applicability to the determination 

of relative values of heating at hypersonic speeds. It is in this 

relative sense that, the following discussion pertains. 

In considering the total heat transferred by convection to a 

missile, it is evident from equation (33) that the course the designer 

should take to obtain the least heating is affected by the value of the 

factor 

  B
m

AC

E

D =
θβ

ρ
sin

0 .   (51) 

To illustrate, first consider the case of a "relatively heavy" 

missile for which this factor is small compared to unity (the term 

"relatively heavy" is used to denote that the denominator involving 

the mass is very large as compared to the numerator involving the 

drag per unit dynamic pressure, ACD ). Then 

  E

D

m

AC

e
θβ

ρ
sin

0

1
−

−  

is small compared to 1. If this function is expanded in series and 

only the leading term retained, equation (33) becomes 

  
E

Ef VSC
Q

θβ

ρ

sin4

'
2

0≅ .   (52) 

For the relatively heavy missile, then, the least heat will be 

transferred when SC f '  is a minimum -- that is to say, when the 

total shear force acting on the body is a minimum. This result is as 

would be expected, if one notes that requiring B<<1 is tantamount 
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to requiring the missile to be so heavy that it is retarded only 

slightly by aerodynamic drag in its motion through the atmosphere. 

Hence, the heat input to the missile is simply proportional to the 

shear force. 

Now let us consider the case when B>>1, or, in other words, 

when this missile is "relatively light. " In this event, 

  11
sin

0

≅−
−

E

D

m

AC

e
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ρ

, 

and equation (31) can be approximated 
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mVQ

D
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4

1 2≅ . 

For the relatively light missile, then, the least convective heating is 

obtained when 
AC

SC

D

f '
 is a minimum. This is at first glance a 

rather surprising result, for it indicates that the heating is reduced 

by increasing the total drag, provided the equivalent frictional drag 

is not increased proportionately as fast. Physically, this anomaly is 

resolved if the problem is viewed in the following way: The missile 

entering the atmosphere has the kinetic energy 
2

2

1
EmV  but, if 
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is small, then nearly all its entrance kinetic energy is lost, due to the 

action of aerodynamic forces, and must appear as heating of both 

the atmosphere and the missile. The fraction of the total heat which 

is given to the missile is,
10
 from equation (33), 

  
AC

SC

D

f '

2

1
. 

Thus, by keeping this ratio a minimum, as much as possible of the 

energy is given to the atmosphere and the missile heating is 

therefore least. 

In order to illustrate these considerations in greater detail, 

calculations have been made using the previously developed 

equations to determine the heat transferred by convection to a 

series of conical missiles. Two classes of missiles have been 

                                                           
10
 Note that even that if all drag is frictional drag, only half the heat is transferred 

to the body. The other half is contained in the boundary layer and us left in the air in 
the body wake. 
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considered. Missiles in the first class were required to have a base 

area of 10 square feet. Missiles in the second class were required to 

have a volume of 16 cubic feet. Gross weights of 0, 1,000, 5,000, 

10,000, and ∞  pounds have been assumed, and the entrance angle, 

Eθ , has been taken as 30° of arc in all cases. Missile heating, up to 

the time of impact, has been calculated as a function of cone angle 

for entrance speeds of 10,000, 20,000, and 30,000 feet per second. 

In these calculations the pressure drag coefficient was taken as 

constant for a particular cone at the value corresponding to the 

entrance Mach number (a value of RT  = 500°R was assumed 

throughout). These coefficients were determined from reference 6 

for cone angles of 10° and greater. For cone angles less than 10°, 

reference 7 was employed to determine these coefficients (base 

drag was neglected in all cases). The total drag coefficient was 

taken as the sum of the pressure drag coefficient plus the 

skin-friction coefficient, the latter coefficient being taken at its 

value for maximum total heat-input rate with altitude. The 

boundary layer was assumed to be wholly turbulent since the 

Reynolds number, based on length of run along the surface of a 

cone and local conditions just outside the boundary layer, was 

always greater than about 6106×  and, in fact, was of the order of 

billions for the more slender cones. Turbulent-boundary-layer data 

were obtained from references 8 and 9, and Sutherland's law for the 

variation of viscosity with temperature was used in obtaining 

"equivalent flat-plate" heat-transfer coefficients. 

Missile heating calculated in this manner for the fixed base area 

and fixed volume cones is presented in figures 5 and 6, respectively. 

Curves for missiles having densities greater than steel are 

considered improbable and are shown as dashed lines. It is clear 

that for both classes of bodies, when the missile is relatively heavy, 

the optimum solution is obtained by making SC f '  as small as 

possible (small cone angle case) and this optimum is accentuated 

with increase in speed. On the other hand, when the missile is 

relatively light, reduced heating is obtained by making 
AC

SC

D

f '
 as 

small as possible (the large cone angle case). It is noted also that, in 

general, the advantage of reduced heating of the relatively light, 

blunt cones is more pronounced in the fixed base area case than in 
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the fixed volume case. 

 

Maximum time rate of average heat input per unit area. 

It was previously noted that the maximum time rate of average 

heat input per unit area may be of serious importance in 

determining the structural integrity of missiles entering the 

atmosphere at high speeds.
11

 n In order to illustrate this fact, 

consider the case of a missile having a shell made of solid material 

and assume that the rate of heat transfer per unit area does not vary 

rapidly from one surface element to the next. Then the rate of 

transfer of heat along the shell will be small compared with the rate 

of transfer through the shell. The shell stress due to heat transfer is 

that resulting from the tendency toward differential expansion 

                                                           
11
 This is the common case when the shell material acts as structural support and 

must also transport or absorb the heat. 
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through the shell and it is proportional to 
η
η

d

dT
 where ηT  is the 

temperature at any point η  within the shell and η  is measured 

perpendicular from the shell surface. We define ηk  as the thermal 

conductivity of the shell material; then the rate at which heat 

transfers through the shell per unit area is 
η
η

η
d

dT
k  and this must, 

at 0=η , equal the rate of heat input per unit surface area. For the 

missile considered as a whole the maximum value of the average 

thermal stress in the shell is a measure of the over-all structural 

integrity and the maximum value of this stress will occur at the 

surface when 

  
dt

dQ

Sdt

dH av 1
=  

is a maximum. 

The course the designer should take to minimize the thermal 

stress for the missile as a whole is dependent, as for the case of 

total heat input, upon whether the missile is relatively heavy or 

light. For the relatively heavy missile the value of B, given by 

equation (51), is small compared to unity. The maximum value of 

the average thermal stress in this case is proportional to (see eq. 

(41)) 

  
4

'
3

0

0

Efav
VC

dt

dH ρ
=








,  (54) 

and, hence, the least average thermal stress is obtained by making 

'fC  a minimum. On the other hand, for the relatively light missile 

the maximum value of the average thermal stress is proportional to 

(see eq. (37)) 
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and, hence, the least average thermal stress occurs when 
AC

C

D

f '
 is 

a minimum. 

In order to illustrate these considerations in greater detail, the 

maximum values of the time rate of average heat input per unit area 

have been calculated for the constant base area and the constant 

volume cones previously discussed in the section on total heat input. 

These values were determined in much the same manner as those of 
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total heat input, with the exception that 'fC  was evaluated at 2y  

(rather than 1y ), given by equation (38) when it applies, and 

otherwise at 00 =y . The results are shown in figures 7 and 8. It is 

seen that the maximum values of average thermal stress are 

reduced for both the slender cones and blunt cones as compared to 

the relatively large values of this stress experienced by cones of 

intermediate slenderness. 

 

Maximum time rate of local heat input per unit area. 

Perhaps even more important than the maximum value of the 

average shell stress is the maximum stress that occurs in the shell at 

the surface element of the missile nose,
12

 where the local 

                                                           
12
 In this report we ate concerned only with bodies. If wings or stabilizers are used, 

the leading edges are similarly surface elements which experience intense heat 
transfer. 
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heat-transfer rate is probably the greatest for, in general, this latter 

stress is many times larger. In fact, this rate of local heat input can 

be so large as to promote temperature gradients through the shell 

that are intolerable even with the most highly conductive materials 

(copper, silver, etc.).
13
 Thus some additional means of cooling, 

such as transpiration cooling, may, in any case, be required in this 

region. 

It was stated previously that pointed-nose bodies are 

undesirable due, in part, to the fact that the local heat transfer rate 

per unit area at the tip is excessive. The validity of this statement is 

demonstrated by the results of the analysis. It is clear (see eq. (44)) 

that since the local transfer rate varies inversely with the square 

root of the tip radius, not only should pointed bodies be avoided, 

but the rounded nose should have as large a radius as possible. The 

question then arises; if the nose radius is arbitrarily fixed, what 

course is available to the missile designer to minimize the problem 

of local heating at the stagnation point? From both equations (46) 

and (50), it is seen that for an arbitrary nose radius, if the mass, 

entry speed, and flight-path angle are fixed, then the only way to 

reduce the stagnation rate of heat input per unit area is to increase 

the product ACD . In fact, a relative stagnation point heat-transfer 

rate per unit area, ψ  may be expressed in terms of B (see eq. (51)), 

if it is defined as the ratio of the maximum stagnation point heat 

transfer rate per unit area for a given missile to the maximum rate 

the same missile would experience if it were infinitely heavy. For 

the infinitely heavy missile, the maximum rate occurs at sea level 

and is (see eq. (50)) 

  
306108.6 EVσ
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so that from equation (50) 
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if the given missile also attains its maximum rate at sea level (i.e., 

03 =y ; eq. (47)); whereas 
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13
 See reference 1 for further discussion. 
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if the given missile attains its maximum rate above sea level (eq. 

(46), 3y  positive). The variation of ψ  with 1/B is shown in 

figure 9. Clearly, the high pressure drag shape has the advantage 

over the slender shape in this respect. 

In order to illustrate these considerations in greater detail, again 

consider the constant base area and constant volume cones 

discussed earlier. Assume the pointed tips of all the cones are 

replaced by spherical tips of the same radius σ . The relative effect 

of varying the cone angle on the stagnation point heating can then 

be assessed by determining the variation of the product 

  
max









dt

dH sσ . 

This product has been calculated for the various cones, assuming 

DC  to be unaffected by the addition of the hemispherical tip (the 

tip radius may be arbitrarily small), and the results are shown in 

figures 10 and 11. It is seen again that tile missiles having large 

cone angle (high drag coefficient) are considerably superior. 

 

DESIGN CONSIDERATIONS AND CONCLUDING 

REMARKS 

In the foregoing analysis and discussion, two aspects of the 

heating problem for missiles entering the atmosphere were treated. 

The first concerned the total heat absorbed by the missile and was 

related to the coolant required to prevent its disintegration. It was 

found that if a missile were relatively light, the least required 

weight of coolant (and hence of missile) is obtained with a shape 

having a high pressure drag coefficient, that is to say, a blunt shape. 

On the other hand, it was found that if the missile were relatively 

heavy the least required weight of coolant, and hence of missile, is 

obtained with a shape having a low skin-friction drag coefficient, 
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that is to say, a long slender shape. 

The second aspect of the heating problem treated was 

concerned with the rate of heat input, particularly with regard to 

thermal shell stresses resulting therefrom. It was seen that the 

maximum average heat-input rate and, hence, maximum average 

thermal stress could be decreased by using either a blunt or a 

slender missile, while missiles of intermediate slenderness were 

definitely to be avoided in this connection. The region of highest 

local heat transfer rate and, hence, probably greatest thermal stress 

was reasoned to be located at the forward tip of the missile in most 

cases. This was assumed to be the case and it was found that the 

magnitude of this stress was reduced by employing a shape having 

the largest permissible tip radius and over-all drag coefficient; that 

is to say, the blunt, high drag shape always appears to have the 

advantage in this respect. 

These results provide us with rather crude, but useful, bases for 
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determining shapes of missiles entering the atmosphere which have 

minimized heat-transfer problems. If the over-all design 

considerations of payload, booster, et al, dictate that the re-entry 

missile be relatively heavy in the sense of this report, then it may 

be most desirable to make this missile long and slender, especially 

if the entry speed is very high (say 20,000 ft/sec or greater). 

Perhaps the slender conical shape is appropriate for such a missile. 

It seems clear, too, that the tip of this missile should be given the 

largest practicable nose radius in order to minimize the maximum 

local heat-transfer rate and hence maximum local shell stress 

problem. Even then it may be necessary to employ additional 

means to minimize the heat-transfer rate and, hence, thermal stress 

encountered in this region (e.g., by transpiration cooling). 

Let us now consider the case where the over-all design 

conditions dictate that the re-entry missile be relatively light in the 

sense of this report. This case will be the more usual one and, 

therefore, will be treated at greater length. 

A shape which should warrant attention for such missile 

application is the sphere, for it has the following advantages: 

1. It is a high drag shape and the frictional drag is only a few 

percent of the total drag. 

2. It has the maximum volume for a given surface area. 

3. The continuously curved surface is inherently stiff and 

strong. 

4. The large stagnation-point radius significantly assists in 

reducing the maximum thermal stress in the shell. 

5. Aerodynamic forces are not sensitive to attitude and, hence, a 

sphere may need no stabilizing surfaces. 

6. Because of this insensitivity to attitude, a sphere may 

purposely be rotated slowly, and perhaps even randomly
14
 

during flight, in order to subject all surface elements to about 

the same amount of heating and thereby approach uniform 

shell heating. 

On the other hand, the sphere, in common with other very high 

drag shapes may be unacceptable if: 

                                                           
14
 Note that if rotation is permitted, slow, random motion may be required in order 

to prevent Magnus forces from causing deviation of the flight path from the target. It 

should also be noted that at subsonic and low supersonic speeds gun-fired spheres, 

presumably not rotating, have shown rather large lateral motions in flight (see ref. 
10). It is not known whether such behavior occurs at high supersonic speeds. 
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1. The low terminal speed cannot be permitted (e.g., because of 

excessive wind drift). 

2. The magnitude of the maximum deceleration is greater than 

can be allowed. 

The first of these disadvantages of the sphere might be 

minimized by protruding a flow separation inducing spike from the 

front of the sphere to reduce the drag coefficient to roughly half 

(see ref. 11). Stabilization would now be required but only to the 

extent required to counterbalance the moment produced by the 

spike. Special provision would have to be made for cooling the 

spike. 

Both of the disadvantages of very high drag shapes may 

however be alleviated by using variable geometry arrangements. 

For example, an arrangement which suggests itself is a round-nosed 

shape with conical afterbody of low apex angle employing an 

extensible skirt at the base. With the skirt flared, the advantages of 

high drag are obtained during the entry phase of flight where the 

aerodynamic heating is intense. Later, the skirt flare may be 

decreased to vary the drag so as to produce the desired deceleration 

and speed history. If the deceleration is specified in the equation of 

motion (see motion analysis), the required variation of drag 

coefficient with altitude can be calculated. 

The examples considered, of course, are included only to 

demonstrate some of the means the designer has at hand to control 

and diminish the aerodynamic heating problem. For simplicity, this 

problem has been treated, for the most part, in a relative rather than 

absolute fashion. In any final design, there is, clearly, no substitute 

for step-by-step or other more accurate calculation of both the 

motion and aerodynamic heating of a missile. 

Even from a qualitative point of view, a further word of caution 

must be given concerning the analysis of this paper. In particular, 

throughout, we have neglected effects of gaseous imperfections 

(such as dissociation) and shock wave boundary layer interaction 

on convective heat transfer to a missile, and of radiative heat 

transfer to or from the missile. One would not anticipate that these 

phenomena would significantly alter the conclusions reached on the 

relative merits of slender and blunt shapes from the standpoint of 

heat transfer at entrance speeds at least up to about 10,000 feet per 
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second. It cannot tacitly be assumed, however, that this will be the 

case at higher entrance speeds (see Appendix B). Accurate 

conclusions regarding the dependence of heat transfer on shape for 

missiles entering the atmosphere at extremely high supersonic 

speeds must await the availability of more reliable data on the static 

and dynamic properties of air at the high temperatures and 

pressures that will be encountered. 

 

AMES AERONAUTICAL LABORATORY 

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

MOFFETT FIELD, CALIF., Apr. 28, 1953. 

 

APPENDIX B 

SIMPLIFYING ASSUMPTIONS IN THE CALCULATION 

OF AERODYNAMIC HEATING 

As noted in the main body of the report, the heating analysis is 

simplified by making the following assumptions: 

1. Convective heat transfer is of foremost importance; that is, 

radiative effects may be neglected. 

2. Effects of gaseous .imperfections, in particular dissociation, 

may be neglected. 

3. Effects of shock wave boundary layer interaction may be 

neglected. 

4. Reynolds' analogy is applicable. 

5. Prandtl number is unity. 

The restrictions imposed by these assumptions will now be 

considered in some detail.  

In assumption 1, two simplifications are involved; namely, (1) 

radiation from the surface of the body is neglected, and (2) 

radiation to the body from the high-temperature disturbed air 

between the shock wave and the surface is neglected. The first 

simplification may be justified on the premise that the maximum 

allowable surface temperature will be about the same for one body 

as compared with another, irrespective of shape, and, consequently, 

radiation away from the surface will be approximately the same. 

Hence, neglecting this form of heat transfer should not appreciably 

change the relative heating which is of principal interest in this 

paper. 
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The second simplification of ignoring radiative heat transfer 

from the disturbed air to the body is not so easily treated. At 

ordinary flight speeds this form of heat transfer is negligible since it 

is well established that at temperatures not too different from 

ambient temperature, air is both a poor radiator and a poor absorber. 

At the flight speeds of interest, temperatures in the tens of 

thousands of degrees Fahrenheit may be easily obtained in the 

disturbed air flow, especially about the heavier blunt bodies. At 

these temperatures it does not follow, a priori, that air is a poor 

radiator. Data on the properties of air at these temperatures are 

indeed meager. Hence, it is clear that calculations of radiative heat 

transfer from air under these conditions must, at best, be qualitative. 

Nevertheless, several such calculations have been made, assuming 

for lack of better information that air behaves as a grey body 

radiator and that Wein's law may be used to relate the wave length 

at which the maximum amount of radiation is emitted to the 

temperature of the air (this assumption, in effect, enables low 

temperature data on the emissivity of air to be used in calculating 

radiation at high temperatures). In these calculations effects of 

dissociation in reducing the temperature of the disturbed air have 

also been neglected and hence from this standpoint, at least, 

conservative (i.e., too high) estimates of radiative heat transfer 

should evolve. The results of these calculations indicate the 

following: 

(1) Radiative heat transfer from the disturbed air to the body is 

of negligible importance compared to convective heat transfer at 

entrance speeds in the neighborhood of, or less than, 10,000 feet 

per second; 

(2) Radiative heat transfer, in the case of relatively massive 

blunt bodies, may have to be considered in heat transfer 

calculations at entrance speeds in the neighborhood of 20,000 feet 

per second; 

(3) Radiative heat transfer, in the case of relatively massive 

blunt bodies, may be of comparable importance to convective heat 

transfer at entrance speeds in the neighborhood of 30,000 feet per 

second. 

From these results, we conclude, then, that the neglect of 

radiative heat transfer from the disturbed air to the body is probably 
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permissible for all except, perhaps, very blunt and heavy shapes at 

entrance speeds up to 20,000 feet per second. However, this 

simplification may not be permissible, especially in the case of 

heavy blunt bodies entering the atmosphere at speeds in the 

neighborhood of, or greater than, 30,000 feet per second. 

In assumption 2, the neglect of effects of gaseous imperfections, 

particularly dissociation, on convective heat transfer would appear 

to be permissible at entrance speeds up to and in the neighborhood 

of 10,000 feet per second, since at such speeds the temperatures of 

the disturbed air are not high enough for these imperfections to 

become significantly manifest. On the other hand, as the entrance 

speeds approach 20,000 feet per second, temperatures of the 

disturbed air may easily exceed 10,000° Rankine, in which case 

appreciable dissociation may be anticipated, inside the boundary 

layer for all bodies, and inside and outside the boundary layer in the 

case of blunt bodies. The magnitude of these effects is at present in 

some doubt (see, e.g., the results of refs. 12 and 13.) Hence, for the 

present, the neglect of effects of gaseous imperfections on 

convective heat transfer is not demonstrably permissible at entrance 

speeds in the neighborhood of 20,000 feet per second or greater. 

In assumption 3, it has been shown by Lees and Probstein (ref. 

14), and more recently by Li and Nagamatsu (ref. 15), that shock 

wave boundary layer interaction may significantly increase laminar 

skin friction coefficients on a fiat plate at zero incidence and Mach 

numbers in excess of about 10. Lees and Probstein found somewhat 

the opposite effect on heat transfer rate in the case of weak 

interaction. It is not now known how this phenomenon depends 

upon body shape or type of boundary layer. However, it is 

reasonable to anticipate that there will be some effect, and certainly 

if the skin friction coefficient is increased in order of magnitude at 

Mach numbers approaching 20, as indicated by the results of Li and 

Nagamatsu for strong interaction, then the phenomenon cannot be 

presumed negligible. Hence, we conclude that from this standpoint, 

also, the convective heat transfer calculations of this report may be 

in error at entrance speeds of the order of 20,000 feet per second or 

greater. 

The assumption that Reynolds' analogy may be used to relate 

skin friction and heat transfer coefficient does not, especially in the 
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light of recent work by Rubesin (ref. 16), seem out of line with the 

purposes of this paper, at least at entrance speeds up to and in the 

neighborhood of 10,000 feet per second. However, it does not 

follow, a priori, that this assumption remains valid at substantially 

higher entrance speeds, especially in view of the imperfect gas and 

shock wave boundary layer interaction effects already discussed. 

The assumption of Prandtl number equal to unity would also 

appear permissible for the analysis of relative heating of missiles at 

the lower entrance speeds considered here. However, in view of the 

questionable effect (see again refs. 12 and 13) of dissociation on 

Prandtl number, it is not clear that this assumption is strictly valid 

at the intermediate and higher entrance speeds treated in this report. 

From these considerations it is concluded that the simplifying 

assumptions made in the main heat transfer analysis of this paper 

will not significantly influence the results at entrance speeds in the 

neighborhood of or less than 10,000 feet per second. However, at 

entrance speeds in the neighborhood of and greater than 20,000 feet 

per second, these results must be viewed with skepticism. More 

accurate calculations of heat transfer at these speeds must, among 

other things, await more accurate determinations of both the static 

and dynamic properties of air under these circumstances. 
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