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CALCULATION OF POTENTIAL FLOW ABOUT 
ARBITRARY BODIES 

J. L. HESS and A. M. O. SMITH 

Douglas Aircraft Company, Aircraft Division, Long Beach, California 

PRINCIPAL NOTATION 

normal component of velocity induced at the control point of the 
ith surface element by a unit value of source density on the j th 
surface element. 
pressure coefficient, Eq. (1.2.11). 
complete elliptic integral of the second kind. 
prescribed normal velocity on boundary surface. 
moments of a plane quadrilateral about its centroid. 
subscripts denoting quantities associated with the ith and jth 
surface elements, respectively. 
complex two-dimensional source strength; also complete elliptic 
integral of the first kind. 
number of surface elements used to approximate a body surface. 

unit normal vector to a surface or surface element; as a scalar, 
distance normal to a surface. 
point in space where potential and velocity are evaluated. 
point on boundary surface where potential and velocity are evalu- 
ated; also static pressure. 
denotes principal value of an integral. 
point where source is located, especially a point on the boundary 
surface. 
radial coordinate denoting distance from the axis of a cylindrical 
coordinate system. 
distance between two points in three-dimensional space, especially 
between a point where a source is located and a point where 
potential and velocity are evaluated. 
distance of a point from the centroid of a quadrilateral. 
denotes the boundary surface about which flow is calculated; 
also cascade spacing. 
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arc length. 
velocity tangent to a two-dimensional body or an axisymmetric 
body in axisymmetric flow. 
cross flow velocity component tangent to the profile curve of an 
axisymmetric body in the xy-plane (Fig. 4). 
circumferential cross flow velocity component on the body surface 
parallel to the y-axis in the xz-plane (Fig. 4). 
fluid velocity. 

velocity induced at the control point of the ith surface element 
by a unit value of source density on the j th surface element. 
complex two-dimensional fluid velocity. 
Cartesian coordinates; as subscripts denote velocity components 
parallel to the coordinate axes; z also used as a complex variable. 
angle of attack. 
slope angle of a curve with respect to the positive x-axis; also an 
eigenv~.lue of the iteration matrix. 
circumferential or polar angle about the axis of a cylindrical 
coordinate system. 
asymptotic convergence factor of an iterative process. 
g/V~ where g is acceleration of gravity. 
Cartesian coordinates in the xy-plane of a point where a source is 
located; r l also denotes location of a free surface. 
surface source density. 
potential induced at the control point of the ith surface element 
by a unit value of source density on thej th surface element. 
velocity potential 

subscript denoting quantities associated with the onset flow. 

1. I N T R O D U C T I O N  

1.1 Scope 
For the past ten years the authors and their colleague s at the Douglas 

Aircraft Company have been engaged in the development of a very general 
method for calculating, by means of an electronic computer, the incom- 
pressible potential flow about arbitrary body shapes31-8~ The method 
utilizes a distribution of singularity over the body surface and computes this 
distribution as the solution of an integral equation. Specifically, a source 
density distribution is obtained as the solution of a Fredholm integral equa- 
tion of the second kind. The strength of this approach is its generality. Once 
potential flow is hypothesized no further simplifying assumptions need be 
introduced. In particular, bodies"are not required to be slender, and per- 
turbation velocities are not required to be small. The method is numerically 
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exact in the sense that any degree of accuracy may be obtained. Good agree- 
ment with real flow is also obtained. 

The various extensions of the method thai have been developed over the 
years have continally increased the number of flow situations that can be 
calculated. The principal extensions concern the geometry of the body or 
bodies about which the flow is to be computed. Separate routines have been 
constructed for two-dimensional shapes, axisymmetric shapes, and fully 
three-dimensional shapes. Other extensions include nonuniform flows, 
unsteady flows, added mass, and two-dimensional free surface effects. The 
process of extending the basic approach is far from complete. Current 
investigations include such problems as acoustic scattering, two-dimensional 
unsteady lift, and steady-state temperature distributions. 

It is the main purpose of the present article to describe the work outlined 
• above, rather than to review all current effort in the field. However, alterna- 

tive methods, both approximate and exact, are also discussed. At least brief 
mention is made of all work of which the authors are aware that is based on 

• the idea of a singularity distribution over the boundary surface, as opposed 
to a distribution on an infinitesimally thin lamina. 

Sections 1 and 2 present the basic theory. The method of solution is 
described in Sections 3, 4, and 5, and is compared with other methods in 
Section 6. Sections 7, 8, and 9 present examples of the calculations and 
compare them with both theory and experiment, to exhibit the wide variety 
of flows to which the method has been successfully applied. Finally, extensions 
to other physical problems are discussed in Section I0. 

1.2 Definition of Potential Flow and Its Usefulness 

The problem under consideration here is that of the potential flow of 

an incompressible, inviscid fluid. Let V denote the fluid velocity at any 
point, p the fluid pressure, and p the constant fluid density. If the viscosity 
is set equal to zero and the density is taken as constant, the general Navier- 
Stokes equations reduce to the well-known Eulerian equation of motion 

O--i + (V" grad) V = - -  

a n d  the equation of continuity becomes 

div (V) = O. 

I 
grad p (I.2.1) 

P 

(I .2.2) 

In Eq. (1.2.1) all body forces (such as gravity) have been assumed to be con- 
servative, and their potentials have been absorbed in the pressure. Equations 
(1.2.1) and (1.2.2) hold in the field of flow, that is, the region exterior (or 
interior) to the boundary surfaces, for example, exterior to a body immersed 
in the fluid. This region, the region of flow, will be denoted R' (see Fig. l). 
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To these equations must be added certain boundary conditions. Attention 
will be restricted here to the so-called direct problem of fluid dynamics. 
Specifically, the locations of all boundary surfaces are assumed known, 
possibly as functions of time, and the normal component of fluid velocity is 

• ! 

R P (x.Y,Z) 

( \ / \ 

FIG. I. Flow about a three-dimensional body surface. 

prescribed on these bot/ndaries. In the general case there may be several 
bodies moving with respect to each other. But the entire boundary will be 
denoted by S (S is thus the boundary of the region R'), and the boundary 
condition will be written as 

V' h is  = F, (1.2.3 
. , . w  

where n is the unit outward normal vector at a point of S, and F is a known 
function of position on S and possibly also a known function of time. For 
the exterior problem a regularity condition at infinity must also be imposed. 

The above equations do not define a potential flow, which is a consequence 
of the condition of irrotationality. The usual procedure in deriving the 
equations of potential flow is to assume that the velocity field V is irrota- 
tional and that it can therefore be expressed as the negative gradient of a 
scalar potential function q~. This is true of the overwhelming majority 
of situations to which the present method is applicable. In particular, it 
includes all flows that can be generated from rest by the action of conserva- 
tive body forces or by the motion of the boundaries. However, a slightly 



CALCULATION OF POTENTIAL FLOW ABOUT ARBITRARY BODIES 5 

more general class of  flows will be considered here. The velocity field V 
is expressed as the sum of two velocities: 

= V® + v. (1.2.4) 

The vector V® is the velocity of the onset flow, which is defined as the velocity 
field that would exist in the fluid if all boundaries ceased to exist or--what 
is the same thing--if all boundaries became simply transparent with regard 

to fluid motion. The vector v is the disturbance velocity field due to the 

boundaries. The velocity v is assumed to be irrotational, but V~ is not so 

restricted. Accordingly, v may be expressed as the negative gradient of a 
potential function ~, that is, 

v = -- grad % (1.2.5) 

Since V® is the velocity of an incompressible flow, it satisfies Eq. (1.2.2), 

and thus v does also; that is, 

div (~  = 0. (1.2.6) 

Using v from (1.2.5) in (1.2.6) then gives the expected result: the potential 
~p satisfies Laplace's equation, 

V9~ = 0 (1.2.7) 

in the region R'. The boundary conditions on tp arise from (1.2.3), (1.2.4), 
and (1.2.5) in the form 

g r a d ~ . n l s  = ~n ---- (I .2.8) 

In the usual exterior problem the regularity condition is 

Ig rad ~1 -~ 0 (1.2.9) 

at infinity. Certain special cases may also arise. Equations (1.2.7), (1.2.8), and 
(1.2.9) comprise a well-set problem for the potential ~, and it is this problem 
that the method of this article is designed to solve. 

The onset flow V® must be such that the disturbance velocity v is a potential 

flow. In the usual ease, when V® is also a potential flow, this condition is 
obviously satisfied. It is also satisfied in a small number of other eases, for 
example, that of a two-dimensional flow whose onset flow is a uniform shear. 

Here V® has a constant vorticity, and the shifting of the streamlines due to 
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the presence of the boundaries cannot cause a change of vorticity at any 
point of the field. 

The essential simplicity of potential flow derives from the fact that the 
velocity field is determined by the equation of continuity (1.2.6) and the 
condition of  irrotationality (1.2.5). Thus the equation of motion (1.2.1) 
is not used, and the velocity may be determined independently of the pressure. 
Also the time, t, enters only as a parameter in (1.2.8); therefore the instan- 
taneous velocity is obtained from the instantaneous boundary condition; 
that is, all problems are essentially steady with respect to determination 
of the velocity. Once the velocity field is known, the pressure is calculated 
from (1.2.1). The only cases of interest are those for which (1.2.1) can be 

integrated to give one of the forms of the Bernoulli equation. When V~ is 

a potential flow, so that the combined velocity field is V = -- grad ~, 
then (1.2.1) integrates to 

~ (1.2.10) P - e ( t )  - ½ I-V? + 
p 

where P(t) is independent of position in the field. In most applications the 

flow is steady, and the onset flow is a uniform stream, that is, V,~ is a constant 
vector. Under these circumstances (1.2.10) can be written in terms of the 
pressure coefficient Cp as 

p - I v12 
C~ -- -- 1 _ , (1.2.11) 

½ pivot I 
where p~ is the pressure at infinity. For other situations, for example, cases 
of  rotating coordinate axes and steady flows with vorticity, other expressions 
are used to calculate the pressure. ~) 

The problem defined by (1.2.7), (1.2.8), and (1.2.9) is seen to be a classic 
Neumann problem of potential theory. But the fluid-dynamics problem 
has certain special features that distinguish it from the fully general Neumann 
problem. These features greatly influenced the development of the method of 
solution described in subsequent chapters. In particular, the usual problem 
is the exterior one, so that the domain of the unknown q: is infinite in extent; 
but often the solution is of interest only on the boundaries. Also, usually 
only a few onset flows and surface conditions are of interest, so that the 
ordinary problem consists of the same boundary conditions for a variety of 
boundary shapes, as opposed to a variety of boundary conditions for the 
same boundary shape. 

The above formulation is quite general, including as it does cases of 
unsteady nonuniform onset flows, ensembles of bodies with nonrigid surfaces 
moving with respect to each other, internal flows, and area suction on the 
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boundaries. Nevertheless, certain classes of potential-flow problems are 
excluded. The most important exceptions are problems for which the location 
of part of the boundary is unknown. Examples are the so-called inverse 
problem of fluid dynamics, in which it is desired to calculate the shape of a 
boundary having a given surface velocity distribution, and the problem 
of a steady three-dimensional lilting body, which has a trailing-vortex wake 
of unknown position. The method of solution described in this article can 
attack such problems only by repeated application using assumed boundary 
locations at each stage. Problems with distributed sources in the flow field 
lead to Poisson's equation rather than to Laplace's, and the present method 
is not well adapted to such problems except when particular solutions can be 
determined. On the other hand, other classes of problems not included in the 
above formulation can be solved by extensions of the present method. These 
include problems whose boundary conditions are different from (1.2.8), for 
example, steady-state temperature distributions for which the potential 
itself is prescribed on the boundary, and certain fluid flows in the presence 
of a free surface where one of several linear boundary conditions is applied 
along the undisturbed position of the free surface. Energy considerations 
dictate the requirement that in unsteady, two-dinlensional lifting cases 
vorticity must be shed from the trailing edge of the airfoil in question. This 
problem can be handled by applying the present method step-by-step in 
time and calculating the location of the trailing vorticity. (Two-dimensional, 
steady lifting cases are included in the formulations (1.2.7), (1.2.8), and (1.2.9) 
by the use of circulatory onset flows.) Finally, the method can be generalized 
to solve other simple, linear, homogeneous, elliptic partial differential 
equations. 

Prospective users of a flow-calculation method are rarely interested in 
whether or not an acura te  solution of an idealized problem can be obtained, 
but are concerned with how well the calculated flow agrees with the real 
flow. In the present instance, the crucial question is: under what circum- 
stances does the neglect of viscosity and compressibility lead to usable 
results ? This matter is discussed more fully in Section 8, where a considerable 
number of comparisons with experiment are given. The conclusions of that 
Section will be anticipated here. The neglect of viscosity is justified except at 
points in or very near regions of catastrophic separation, for example, wakes. 
Local regions of separation and reattachment do not normally invalidate the 
calculations. On the types of bodies of interest in applications, even when 
catastrophic separation is present, the calculations are valid a moderate 
distance forward of the separation point. Neglect of  compressibility is 
justified for all flows where the local Mach number does not exceed a value 
of approximately one-half. By suitably adjusting the calculations, the validity 
can be extended up to a local Mach number of unity. That is, the adjusted 
calculated flowagrees with real flow as long as there are no supersonic 
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regions. The above conclusions refer to calculated fluid velocity and pressure. 
Obviously, drag forces are never predicted correctly. The rather surprising 
range over which potential flow can be used to predict real flow accounts for 
its importance and the interest there has been in it over the years. 

1.3 Exact Analytic Solutions 

Despite the fact that Laplace's equation is one of the simplest and best 
known of all partial differential equations, the number of useful exact 
analytic solutions is quite small. The difficulty of course lies in satisfying 
the boundary conditions, and the direct problem of potential flow, as defined 
by (1.2.7), (1.2.8), and (1.2.9), can be solved analytically only for an extremely 
limited class of boundary surfaces S. There are also indirect solutions, which 
form a different set. 

In axisymmetric and three-dimensional cases, the direct problem of 
potential flow can be solved analytically only by the technique of separation 
of variables. For this technique to be applicable, the boundary must be a 
coordinate surface of one of the special orthogonal coordinate systems for 
which Laplace's equation can be separated into ordinary differential equa- 
tions. Separability conditions are discussed in many standard works.~ lo, xl~ 
There ate two kinds of separability: simple separability and the so-called 
"R-separability", in which the solution is assumed to be a product of functions 
of the individual coordinates divided by a "modulation factor" R that is a 
known function of the coordinates. Laplace's equation is simply separable in 
eleven coordinate systems, which are all specializations or limiting cases of 
ellipsoidal coordinates. Solutions for these systems are relatively easy to 
obtain and are all well known. It is quite different with the R-separable 
systems, of which eleven are given by Moon and Spencer. ~11) Solutions for 
these systems are considerably more difficult to obtain. It appears that, 
at least for the case of axisymmetric flow, it might be possible to obtain 
analytic solutions for a few of the R-separable coordinate systems, for 
example, toroidal coordinates and bispherical coordinates. However, as far 
as can be determined, no such solutions have actually been calculated without 
the use of approximations. The only exact analytic solution of the direct 
problem of potential flow about a closed axisymmetric or three-dimensional 
body is that for the general ellipsoid and its specializations. A few other 
solutions that use the other coordinate surfaces of eilipsoidal coordinates are 
also available, for example, flow through certain apertures. A small number of 
axisymmetric solutions may possibly be generated in the future from R- 
separable coordinate systems. 

In two-dimensional cases Laptace's equation is simply separable in all 
orthogonal coordinate systems. This technique is not commonly used, how- 
ever, because in two dimensions the direct problem of potential flow (or any 
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problem governed by Laplace's equation) can be replaced by the problem of 
finding a suitable conformal transformation of the boundary. The use of this 
latter method has resulted in a considerable number of useful potential-flow 
solutions. But the limits on human ingenuity are such that these solutions 
comprise a quite restricted class. 

There is also a fairly large number of two-dimensional and axisymmetric 
solutions available from indirect methods. In such approaches, first suggested 
by Rankine in 1871, a set of known singularities is hypothesized to exist in 
the fluid, usually in the presence of an onset flow. The singularities most 
often used are point sources, line sources, doublets, and vortices. For these, 
the fluid velocity and pressure at any point can easily be obtained. For two- 
dimensional and axisymmetric flows, the total stream function of the singu- 
larities and the onset flow may be utilized to calculate streamlines, any one of 
which may then be considered to be a boundary surface. A similar procedure 
could be followed in three dimensions, but it would be considerably more 
difficult, because of the absence of a simple stream function. These methods 
do not solve the direct problem of potential flow, because they do not begin 
with a prescribed boundary surface but instead accept whatever boundary 
resuRs from the singularity distribution. 

It is clear that the variety of boundary shapes for which the exact analytic 
solutions can be obtained is far too limited to be of much use in practical 
applications. More general procedures are required. The chief value of 
analytic solutions is to evaluate the accuracy of approxmiate solutions or of 
exact numerical methods. 

1.4 Approximate Solutions 

A distinction must be made between approximate solutions and exact 
numerical methods. In the latter the analytical formulation, including all 
equations, is exact, and numerical approximations are introduced for pur- 
poses of calculation. Examples of numerical approximations are numbers 
having a finite number of decimal places and integrals that are evaluated by 
quadrature formulas. Exact numerical methods have the property that the 
errors in the calculated solution can be made as small as desired, by sufficiently 
refining the numerical calculations, In contrast., approximate solutions 
introduce analytical approximations into the formulation itself and thus 
place a limit on the accuracy that can be obtained in a given case regardless 
of the numerical procedures used. 

Because exact analytic solutions are scarce and exact numerical methods 
are generally beyond the capability of hand computation, approximate 
solutions have in the past received most of the attention of investigators in the 
field of potential flow. Mary approaches have been formulated. Some are 
analytic in that the general solution can be written in ,,,imple closed form, and 
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others are numerical in that considerable computation is required to obtain 
the solution for each specific case. It is not the intention of this article to 
discuss approximate solutions at length. Thwaites tl~) presents a compre- 
hensive review. The common property of all approximate solutions is that 
restrictions are placed on the type of body or boundary surface about which 
the flow can be computed. Moreover, it is not always clear whether or not a 
particular approximate method is valid for a given body. 

A large and well-known class of  approximate solutions uses one or both 
of the following assumptions: (a) the body is slender, with small local surface 
slope; (b) the perturbation-velocity components due to the body are small 
with respect to the uniform stream that is the onset flow. Certain restrictions 
on the body are evident in the assumptions. Other restrictions arise in 
practice. For example, the curvature must not vary too rapidly along the 
surface. Many thin bodies are beyond the capability of these methods, for 
example, a slender missile-type body with corners and flares. Van Dyke <la) 
considers in detail two perturbation methods that contain several well- 
known procedures as special cases. He states: "Therefore no precise state- 
ments can be made as to when either of them [the two methods] can be 
applied." 

Another type of approximate solution utilizes a distribution of singularities 
interior to the body surface. For example, the singularities are normally 
placed along the chord or camber line for two-dimensional airfoils, along 
the axis of symmetry for axisymmetric bodies, and in a plane for three- 
dimensional shapes. Various types of singularities are used, for example, 
sources, dipoles, vortices, etc., both discrete and distributed. The locations 
and general properties of the singularities are assumed, and their strengths 
are determined so that boundary conditions are satisfied in some sense on the 
body surface. In the limit of thin bodies, these methods can in many cases be 
shown to be equivalent to those of the previous paragraph. Methods based on 
interior singularity distributions are not limited to slender bodies. A prolate 
spheroid in a uniform stream parallel to the axis of symmetry can be exactly 
represented by a source distribution of linearly varying strength located 
along the axis of symmetry between the loci. It is nevertheless valid to 
term this method approximate, since general shapes cannot be exactly 
represented by internal singularities. The idea was first introduced by von 
K~rm~n,< 14) who considered axisymmetric shapes in axisymmetric flow and 
represented them by a source distribution along the axis of symmetry. He 
states: "This [representation] is possible only in the exceptional case when the 
analytical continuation of the potential function, free from singularities in the 
space outside the body, can be extended to the axis of symmetry without 
encountering singular spots." Clearly, such a condition could never be 
guaranteed in a practical application. A slender axisymmetric ellipsoid- 
cylinder, which has a curvature discontinuity, would presumably not possess 
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this property. What degree of accuracy can be obtained in the general case 
is not known. 

Approximate solutions are therefore unsatisfactory for two reasons. 
First, they are obviously inapplicable in many cases, such as two bodies in 
close proximity (airfoil with slat), many internal flows, annular inlets, 
thick or bumpy bodies, and many nonuniform flows. Second, their validity 
in many cases is not predictable, and the accuracy of the computed solutions 
is unknown. These facts lead to consideration of exact numerical methods of 
solution. 

2. R E D U C T I O N  O F  T H E  P R O B L E M  TO A N  I N T E G R A L  
E Q U A T I O N  F O R  A S O U R C E - D E N S I T Y  D I S T R I B U T I O N  O N  

T H E  B O D Y  S U R F A C E  

The exact solution of the direct problem of potential flow for arbitrary 
boundaries can be approached in a variety of ways, all of which must finally 
become numerical and make use of a computing machine. The use of a finite- 
difference approximation of the Laplacian operator naturally suggests itself, 
as does the use of a form of Green's function. More efficient, however, are 
methods based on the reduction of the problem to an integral equation over 
the boundary surface. Many different integral equations can be obtained by 
the use of Green's theorem, and several other equations can also be derived. 
Some discussion of alternative methods is contained in Section 6. In this 
section, discussion will be restricted to the method of this article, which 
is based on an integral equation for a source-density distribution on the 
surface of  the body or bodies about which the flow is being computed. 

The problem considered is that defined by (1.2.7), (1.2.8), and (1.2.9). 
A sketch illustrating the situation for a single three-dimensional body is 
shown in Fig. I. Consider a unit point source located at a point q whose 
Cartesian coordinates are xq, yq, zq. At a point P whose coordinates are 
x, y, z the potential due to this source is 

1 
~P = r(P,q) ' (2.1) 

where r(P, q) is the distance between P and q, namely, 

r ( P ,  q) = V'[(x - -  xq) z + (y - -  yq)2 .a r_ (,2 - -  zq)2]. (2.2) 

The designation "source" is employed in accordance with customary fluid- 
dynamics usage. The potential (2.1) gives rise to a velocity radially outward 
in all directions from the point q, and thus the point q may be thought of 
as the location of a "source" of fluid. However, this physical interpretation 
is not important.to the method. It is sufficient t9 say that the solution is 
built up of elementary potentials of the form (2.1), without specifying their 
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nature. The potential in (2. l) satisfies (1.2.9) and satisfies (1.2.7) at all points 
except the point q. Because of the linearity of the problem, the potential due 
to any ensemble of.such sources or any continuous distribution of them that 
lies entirely interior to or upon the boundary surface S satisfies Eq. (1.2.9) 
and satisfies Eq. (1.2.7) in the region R' exterior to S. Of particular interest 
is the potential of a continuous source distribution on the surface S. If the 
local intensity of the distribution is denoted by o(q), ~vhere the source point q 
now denotes a general point of the surface S (see Fig. 1), then the potential of 
the distribution is 

~ a(q) 
9~ = r(-P, q) dS. (2.3) 

s 

It is shown in basic works of potential theory, for example, Ref. 15, that 
under very general conditions the disturbance potential of  a body in potential 
flow can indeed be represented in the form (2.3), and it is in this form that 
it is considered in the present method. 

Regardless of the nature of the function a(q), the disturbance potential 
as given by (2.3) satisfies two of the three equations of the direct problem of 
potential flow. This function is determined from the requirement that the 
potential also must satisfy the other equation, (1.2.8), which expresses the 
normal-velocity boundary condition on the surface S. Applying the boundary 
condition (1.2.8) as well as subsequently evaluating fluid velocity on the 
surface, requires evaluating the limits of the spatial derivatives of (2.3) 
as the point P approaches a point p on the surface S. Care is required because 
the derivatives of 1/r(P, q) become singular as the surface is approached. A 
rigorous development of the limiting process is given by Kellogg. {aS) The 
details will not be pursued here, but the nature of the limits of the normal and 
tangential derivatives of f ,  that is, the normal and tangential fluid velocities, 
will be illustrated by an example. 

Consider the two-dimensional body whose profile curve is shown in 
Fig. 2. The coordinate axes, x and y, have been placed in such a way that 
the curve is tangent to the x-axis at the origin. An integration in the z-direc- 
tion can be performed that reduces the double integral of (2.3) to a single 
integral. Also, for illustrative purposes the source density o is set equal to 
unity. The x and y velocity components at a point P located a distance h 
up the positive y-axis are (see Section 4.1 for a more complete discussion) 

and 

Vx = r~'~c -- 2 [ - xq 
- 5 x  = ~ x ~  + (/1 - ) ,q)2 d s  

(2.4) 

&p [ h -- )'q 
V u = - - 7 -  = 2 j  xo-+(h--) 'q)2 ds 

c ' ) '  . q 
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where xe and y~ are the coordinates of a general point q on the profile curve 
and s denotes arc length along the profile curve. Obviously, as P approaches 
the surface, V= becomes the tangential component of velocity and Vz, the 
normal component. The integrands of (2.4) are shown in Fig. 2 for various 
distances h of the point P from the surface. It can be seen that as it approaches 
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FiG. 2. Influence on the velocity components  at points in space of a source density 
of unit strength located on a two-dimensional surface whose profile curve is a 

parabola having a unit value of curvature radius at the origin. 
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zero, the integrand of  Vz approaches a function whose behavior near the 
origin is similar to --1/s; that is, the integrand becomes positively infinite 
for small negative s or xq and negatively infinite for small positive s or x~. 
Thus the integral for tangential velocity must be evaluated as a principal 
value; that is, the positive and negative infinities arc allowed to "cancel out". 
As h approaches zero, the integrand for Vv approaches a function consisting 
of  a Dirac delta function (an infinite value of infinitesimal width whose 
integral is finite) plus a function that is well behaved and whose value at the 
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origin is in fact finite and proportional to the local curvature of the profile 
curve. Thus, in the limit, the integral for normal velocity consists of a term 
outside the integral plus a term whose integrand is well behaved. Although 
the example here is two-dimensional, the conclusions are true in general. 
In three dimensions the integral for surface tangential velocity has a singular 
integrand and must be evaluated as a principal value. The normal velocity 
consists of a term outside the integral plus an integral that can be evaluated 
by ordinary means. In three dimensions the integrand in the expression for 
normal velocity is not finite, but it is integrable. 

In accordance with the procedure presented by Kellogg, (15) the disturbance 
potential as given by (2.3) is differentiated, and the boundary condition 
(1.2.8) applied to it by allowing the point P to approach a point p on the 
Surface S. The result is the following integral equation-for the source-density 
distribution a(p) : 

2rr or(p) - -  ~,n - tr(q) d S  = - -  n ( p ) .  V~ + F. (2.5) 

s 

In this equation, a/bn denotes differentiation in the direction of the outward 
normal to the surface S at the point p, and the unit outward normal vector 

has been written n(p) to show explicitly its dependence on location. The 
solution of (2.5) is the central problem of the present method. 

Equation (2.5) is a Fredholm integral equation of the second kind over the 
boundary surface S. The term 2zr or(p) arises from the delta function that 
is brought in by the limiting process of approaching the boundary surface, 
as illustrated by the above example. The kernel of the integral equation, 
- -~ /~n  [ l / r (p ,q)] ,  is the outward normal velocity at the point p due to a 
unit point source at the point q. This kernel depends only on the geometry 
of the surface S. The specific boundary conditions, that is, onset flow, 
suction velocity, etc., enter (2.5) only on the right side. This fact is useful in 
applications, since it means that for a given body shape several different 
flows may be computed simultaneously. 

The theory of the solution of (2.5) is discussed extensively by Kellogg, (15) 
and ftmdamental existence and uniqueness theorems are presented. The 
conditions under which a solution can be obtained are very general. The 
surface S need not be slender or analytic. In fact, for the problem of flow 
exterior to a given surface, S may consist of several disjoint surfaces. The right 

side is likewise practically unrestricted. In particular, since only ~ enters 
(2.5), it is not absolutely essential that this velocity field be derivable from a 
potential function, although of course the disturbance velocity field must be a 

potential flow. Both V~_ and F may vary with position. Internal flows as well 
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as external may be considered. There is one restriction on (2.5). The existence 
proof of Ref. 15 requires that the prescribed boundary value, that is, the 
right side of (2.5), be a continuous function of position on the surface. 

Because of the presence of n(p), this means that in general the surface S 
must ha~,e a continuous normal vector. Thus boundaries with corners are 
excluded from the existence proof. In practice, however, it has been found 
that the present method does give correct results near convex corners, where 
the surface velocity is in general infinite. For concave corners the method has 
difficulty, especially if the corner is a stagnation point of the flow. For some 
onset flows or for corners of small turning angle, the calculated results are 
sufficiently accurate for most purposes. Other situations require the concave 
corner to be rounded in order to obtain an accurate solution. (In any real 
flow it is" automatically rounded of course by the boundary layer.) 

For a known boundary surface S, the kernel of (2.5) can be calculated 
in a straightforward manner, and the equation is a linear one for the un- 
known function o. This procedure is not well suited to the solution of prob- 
lems for which all or part of the boundary has an unknown location, for 
example, the so-called inverse problem of potential flow, in which the surface 
velocity distribution is prescribed but not the shape of the boundai'y. In such 
problems the kernel cannot be evaluated. If the coordinates of the boundary 
were considered as unknowns in the kernel, the resulting equation would be 
nonlinear. The only possibility of using the present method for problems 
having boundaries with unknown locations is to assume the locations of all 
boundaries, solve the resulting direct problem, and then repeat the process 
after adjusting the boundaries by "cut and try" until all conditions are 
satisfied. 

For three-dimensional bodies (2.5) is a two-dimensional integral equation. 
For two-dimensional and axisymmetric bodies, one integration can be per- 
formed in advance, and (2.5) is thus reduced to a one-dimensional integral 
equation. This reduction is possible for axisymmetric bodies even if the flow 
itself is not axisymmetric, for example, flow at an angle of attack. This 
feature accounts for the efficiency of the integral-equation methods. The 
dimensionality of the problem is reduced by one: from three to two for three- 
dimensional bodies and from two to one for two-dimensional and axi- 
symmetric bodies. Moreover, for exterior flows the domain of the function to 
be found is reduced from an infinite one, the exterior flow field, to a finite 
one, the body surface. 

Equation (2.5) is an integral equation of the second kind, for which the 
unknown function appears outside the integral as well as inside. Some other 
integral-equation methods for solution of potential-flow problems lead to 
equations of the first kind, for which the unknown function appears only in 
the integral. Equations of the second kind have many advantages, both 
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theoretical and practical. Existence and uniqueness proofs are relatively 
abundant for equations of the second kind, but they are scarce for equations 
of the first kind. Equations of the first kind frequently occur that have either 
no solution or infinitely many solutions. Numerically, integral equations of 
the second kind are considerably more tractable. For example, if the integral 
equation is approximated by a set of linear algebraic equations, as it is in the 
present method, the presence of the term outside the integral insures that in 
general the diagonal entries of the resulting coefficient matrix will be much 
larger than any off-diagonal entries. Since an equation of the first kind 
lacks such a term, the diagonal entries of the approximating coefficient 
matrix are not necessarily larger than the other entries. This difference can be 
crucial numerically if iterative matrix-solution methods are used. 

The two terms on the left side of (2.5) have a simple interpretation. The 
term 2~r o(p) is the contribution to the outward normal velocity at a point p 
on the boundary of the source density in the immediate neighborhood ofp.  
The integral term represents the contribution of the source density on the 
remainder of the boundary surface to the outward normal velocity at p. 
The feeling is frequently expressed that local effects should dominate and that 
the integral term in (2.5) should thus be much less important than the term 
2~r ~(p). This situation can be true only if the particular nature of the function 
a(p) causes the integral largely to cancel itself, and it is not due to an inherent 
difference in size between the two terms. To illustrate the magnitude of these 
terms, the source density will be assumed to have a constant value of unity 
over the boundary surface S. The normal velocity in the direction exterior 
to S at a point p due to this source distribution is given by the left side of 
(2.5) as 

[ v~ (p) l~=~  = 2, ,  - 5-~ dS .  (2 .6 /  

3" 

If this expression is integrated over the entire closed surface S, the result 
is the total velocity flux outward from S due to the source distribution. 
From the definition (2.1) it can be readily shown that the total velocity flux 
due to a unit point source is 4~r. Thus the total flux due to a unit source 
distribution on S is 4o times the total surface area of S. If (2.6) is integrated 
over S, the local contribution given by the first term on the right is obviously 
2o times the total surface area of S'. Thus the integral over S of the second 
term on the right side of (2.6) is exactly equal to that of the first term. Accord- 
ingly, for a unit source-density distribution the average over all points p of S 
of the local contribution to the normal velocity is identical with the average 
of the contribution'of the remainder of the surface S. (If the normal velocity 
in the direction interior to S were integrated, conservation of fluid would 
require the result to vanish. Thus in this case the average values of the two 
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terms of (2.6) are equal in magnitude but of opposite sign.) The conclusion 
regarding the approximating rriatrj,Lanentioned in the previous paragraph is 
that although the diagonal entries are all larger than any off-diagonal entries, 
the sum of all diagonal entries is approximately equal to the sum of all off- 
diagonal entries. Similarly, it is not necessarily true that the kernel of (2.5) 
is larger when q is near to p than when it is relatively far away. For example, 
on a two-dimensional circular cylinder the kernel is constant all around the 
circle. 

There is a certain difference between the exterior flow problem and the 
interior flow problem. If the same closed surface is considered, the only 
difference between the two problems is the reversal of the outward normal 
direction n and thus the reversal of the sign of the integral term of (2.5). 
If the boundary surface is convex, the kernel of (2.5) is positive for the 
exterior problem and negative for the interior problem. This is evident from 
the physical interpretation of the kernel. For the exterior problem, the 
integral equation is determinative in that if the right side of (2.5) is zero, 
the only solution is o = 0; that is, no nonzero source distribution gives rise 
to zero normal velocity everywhere on the boundary. Thus the solution of the 
exterior problem exists and is unique, and no difficulties are encountered in 
solving the equation. For the interior problem the integral equation (2.5) is 
indeterminative; that is, there is a source distribution, not identically zero, 
that gives zero normal velocity everywhere on the boundary.* Clearly such a 
source distribution gives zero fluid velocity everywhere within the boundary 
For example, a constant source density on a circular cylinder or sphere 
satisfies this condition. Thus a source-density distribution for the interior 
problem exists only if the right side of (2.5) satisfies a certain condition, and 
if it does exist, it is not unique. The condition required of the right side is that 
its integral over the boundary must vanish. This simply means that the total 
flux across the boundary must be due to the onset flow, for example, due to 
interior sources. The surface source density distribution does not contribute 
to the flux. This is certainly a physical requirement for flow of an incompres- 
sible fluid. If any solution o can be found, the nonuniqueness is not physically 
significant, since it means only that to any solution may be added a source 
distribution that gives rise to no interior velocity. If the integral equation 
is approximated by a set of linear algebraic equations, the coefficient matrix 
for the interior problem is either singular or nearly singular, depending on the 
details of approximation. In the present method the matrix is nearly singular, 
and nothing unusual seems to occur in the calculations. 

* If a set of linear algebraic equations has a non-trivial solution for a zero right side 
the coefficient matrix is said to be singular. Since the word singular has a different meaning 
for .an integral equation, the word indeterminative is used here to describe this condition, 
and  the word determinative is used to describe the opposite situation when there is no 
non-trivial solution for a zero right side. 

C 
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3. T H E  M E T H O D  O F  S O L U T I O N  

3.1 General Remarks 

The method chosen for the numerical solution of the integral equation 
(2.5) was dictated, to a considerable extent, by the fact that the boundary 
surface S, which is the domain of integration, is completely arbitrary. In 
particular, this means that the integration must be performed numerically 
rather than analytically. The result is that methods that approximate the 
kernel or the unknown function by a series of suitably chosen functions are 
not very attractive. Two approaches present themselves. The equation may 
be attacked directly as an integral equation by using an iterative procedure 
appropriate for Fredholm integral equations. Alternatively, the integral 
equation may be approximated by a set of linear algebraic equations, which 
are solved by any of the usual techniques. Although the two approaches differ 
conceptually, in practice the  distinction is rather obscure. In the former, 
the integral is evaluated by some form of approximate quadrature, and the 
process is iterated. In the latter, an approximate quadrature is used to 
obtain a set of linear equations, which may then be solved by iteration. It 
is possible to construct examples for which the two approaches lead to 
identical sequences of numerical operations. For either approach an approxi- 
mate integration procedure must be selected from among the large number of 
available quadrature formulas. Here again, the fact that the boundary is 
arbitrary affects the situation. This surface must be approximated in some 
manner for the computer, and the manner of approximating the surface is 
bound up with the approximate integration procedure, as it is with the entire 
method of solution. 

The present method of solution was selected largely because of its con- 
ceptual simplicity. It was felt that resort should be made to a complicated 
method only after a simple method had proved too inaccurate or too time 
consuming. Such has not been the case. Although experience has indicated 
that certain modified approaches might yield improvements in speed or 
accuracy, the prospective gains have so far appeared too small to justify the 
effort. 

The approach adopted consists of approximating (2.5) by a set of linear 
algebraic equations. This is accomplished in the following manner. The 
boundary or body surface S about which the flow is to be computed is 
approximated by a large number of surface elements, whose characteristic 
dimensions are small compared to those of the body. Over each surface 
element the value of the surface source density is assumed constant. This 
reduces the problem of determining the continuous source density function a 
to that of determining a finite number of values of a, one for each of the 
surface elements. The contribution of each element to the integral in (2.5) can 
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be obtained by taking the constant but unknown value of ~ on that element 
out of the integral and then performing the indicated integration of known 
geometric quantities over the element. Requiring (2.5) to hold at one point 
of  the approximate body surface, that is, requiring the normal velocity to 
take on its prescribed value at one point, gives a linear relation between the 
values of ¢ on the elements. On each element a control point is selected where 
(2.5) is required to hold. This gives a number of linear equations equal to the 
number of unknown values of ~. The coefficient matrix consists of the normal 
velocities induced by the elements at each other's control points for unit 
values of source density. Once the linear equations have been solved, flow 
velocities and potential may be calculated at any point by summing the 
contributions of  the surface elements and that of the onset flow. Usually, 
velocities and pressures on the body surface are of greatest interest. Because 
of the manner in which the solution has been effected, these must be evaluated 
at the control points, that is, at the same points where the normal velocity 
was made to assume its prescribed value. 

3.2 Approximation of the Body by Surface Elements 

The basic input to the computer program consists of the specification 
of (1) the body surface about which the flow is to be computed, (2) the onset 
flow if this is not a uniform stream, and (3) the prescribed normal velocity 
on the surface if this is not zero. The specifications of the last two of these 
are straightforward, and in most cases are not even required. Of several 
possible ways of specifying the body surface, the only one seriously considered 
consists in defining the body by means of the coordinates of a set of points 
distributed over the surface. Specifications of the surface that rely on analytic 
expressions or require surface slopes and curvatures may simplify the cal- 
culations, but such information is rarely available in practical cases. The 
choice of input points rests with the user of the method. They may, for 
example, be taken from drawings. The numerical significance of the co- 
ordinates of the input points must be sufficient to guarantee the accurate 
computation of  surface slopes. Because the input points are used to form the 
approximating surface elements, their distribution and total number deter- 
mine the accuracy of the resulting calculations. 

Figure 3 shows the surface elements used to approximate various types 
of bodies. For two-dimensional and axisymmetric body shapes, only a single 
profile curve need be defined by input points. This curve is assumed to lie 
in the xy-plane, and the x-axis is always taken as the symmetry axis for 
axisymmetric bodies. For closed two-dimensional bodies, a complete closed 
curve is specified by input points, and an axisymmetric closed body is speci- 
fied by input points lying on the half of the contour in the half-plane y / >  0. 
These points are connected by straight-line segments, and the profile curve is 
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approximated by an inscribed polygon. The surface elements for two- 
dimensional bodies are thus thin, infinite plane strips, and those for axi- 
symmetric bodies are frustums of cones having small slant heights. It should 
be mentioned that this representation is used for axisymmetric bodies even 
for certain cases when the flow is not axisymmetric, but varies circum- 
ferentially in a known way, for example, the case of cross flow about an axi- 
symmetric body in a uniform stream perpendicular to the body's symmetry 
axis. For such cases the subsequent calculations are different from those for 
the axisymmetric case, but the input is identical, and the calculations are 
carded out without resort to fully three-dimensional techniques. For truly 
three-dimensional bodies, the input points must be distributed over the entire 
surface. These points are associated in groups of four and used to form plane 
quadrilateral surface elements (see Fig. 3). The plane of the element is 

Z ~t 

(a) (b) 

FIG. 3. Approximation of the body surface by elements. (a) Two-dimensional and 
axisymmetric bodies. (b) Three-dimensional bodies, 

equidistant from the four input points used to form it, and its unit normal 

vector n is the normalized cross-product of two "tangential" vectors each of 
which is obtained by subtracting the coordinates of two of the four input 
points. The corners of the quadrilateral are projections of the four input 
points into the plane of the element. In forming these elements, most input 
points are used in the formation of four elements, so that the number of 
input points required is only slightly larger than the number of resulting 
elements. The details of the input and element-formation procedure for 
three-dimensional bodies are given in the report form of Ref. 3. 

For all body geometries, the order in which the points defining the surface 
are input determines which direction is considered the "outer" normal 
direction and thus determines on which side of the surface the flow is com- 
puted. For example, points defining a two-dimensional or axisymmetric 
body are input sequentially along the profile curve, and the flow field is con- 
sidered to lie to the left with respect to the direction from any input point 
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to the next one in the sequence. In the case of exterior flow about a single 
closed contour, the defining points are input in clockwise order about the 
contour. If an interior flow is desired, the points are input in counter= 
clockwise order. If an exterior flow is calculated, the interior flow is normally 
not meaningful and vice versa. The order of the input points determines 
a preferred tangential direction along, the profile curve. As described in 
Section 3.5, the sign of calculated tangential velocities indicates whether 
the velocity is in the direction determined by the order of the input points 
or  in the opposite direction. The order of the input points is also used to 
prescribe the slope angle of the profile curve, which may be in any of the 
four quadrants, that is, may vary from --or to +~r. For fully three-dimen- 
sional cases, the outward normal is determined by the same principle as that 
used for two-dimensional cases. The procedure employed is, however, some- 
what more lengthy to explain (see the report form of Ref. 3). 

On each element a control point is selected at which the normal velocity 
boundary condition is to be satisfied. For two-dimensional and axisymmetric 
bodies, the control points are the midpoints of the line segments joining the 
input points that define the profile curve. This is the obvious choice for 
two-dimensional bodies and seems to be a reasonable choice for axisymmetric 
bodies, although there is some question. For the quadrilateral elements used 
to approximate three-dimensional bodies, the proper choice of the control 
point is not at all obvious. It seems evident that the control point for a 
rectangular element should be the center, but there are many possible defini- 
tions that reduce to the center for a rectangular element. On each quadrilateral 
element there is one point at which a constant source density on that element 
gives rise to no velocity in the plane of the element; that is, there is a point 
at which the effect of the element is entirely normal. It was decided to use 
this point as the control point, although subsequent results indicated that 
the centroid of the area of the quadrilateral is an equally good choice. These 
two points are not necessarily near each other if the element is not approxi- 
mately rectangular. 

It should be emphasized that for all body geometries the surface elements 
are simply devices for effecting the numerical solution of the integral equa- 
tion (2.5). They essentially define integration increments and normal direc- 
tions at points of the surface. In particular, the polygonal or polyhedral 
bodies shown in Fig. 3 have no direct physical significance. The flows eventu- 
ally computed are not those about these bodies. It is only at the control 
points that the normal velocity assumes its prescribed value. For example, if 
the normal velocity is prescribed as zero, it is in general nonzero at all 
points of  the element except the control point; that is, the element "leaks". 
At the edges of the elements the velocity approaches infinity because of the 
discontinuity of the source density and/or the discontinuity in slope, but the 
approach to infinity is not that associated with corner flows. The computed 
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flow has significance only at the control points themselves and at points off 
the body surface. 

From the manner in which quadrilateral elements are formed in three- 
dimensional cases, it is evident that in general the edges of adjacent elements 
are not coincident; that is, there are small "openings" between the elements. 
In view of the discussion in the previous paragraph, this is a matter of small 
concern. Any errors due to this source are of higher order than, and are 
negligible compared to, those due to the basic approximation of the body 
surface by plane elements over each of which the source density is constant. 
The important thing is that the "width" of the openings, as measured by the 
distance that the four input points must be projected to put them in the plane 
of the element, be small compared to the dimensions of the element, and this is 
guaranteed by the method of element formation for any reasonable distri- 
bution of input points. The use of triangular surface elements, as suggested 
by Levy,~ 16~ eliminates these openings; but this does not seem worth while, 
since such elements are considerably more awkward for the user. In par- 
ticular, quadrilateral elements are very well suited to the frequently occurring 
case when points of the body surface are known only along plane curves at 
certain fixed values of one of the coordinates, for example, "section data". 
However, since a triangle is a special case of a quadrilateral, the present 
method can be used to generate plane triangular surface elements if desired. 
The required number of input points is still only slightly larger than the 
resulting number of elements. 

The accuracy of the calculation is determined by the number and distri- 
bution of the elements used to approximate the body surface. It often turns 
out in practice that for satisfactory accuracy a considerably larger number 
of elements should be used than the number of points at which it is desired 
to calculate velocities and pressures. For exterior flows about simple, smooth 
axisymmetric bodies and about nonlifting two-dimensional bodies, 60 to 
80 elements are usually sufficient. Lifting two-dimensional airfoils require 
more elements--100 or more, depending on the shape. Complicated surfaces, 
multiple bodies, and many internal flows may need more than 200 elements 
in two-dimensional and axisymmetric cases. Three-dimensional bodies of 
course require considerably larger numbers of elements. Only the simplest 
shapes can be calculated with less than 200 elements. In practical applications, 
useful results have been obtained for fairly complicated shapes--including 
multiple bodies--with numbers of elements between 500 and I000. Because of 
the input required, the long computing times, and the machine storage 
limits, most users accept lesser accuracies in three-dimensional cases than in 
two-dimensional or axisymmetric cases. 

The proper distribution of elements over the body surface is largely 
a matter of intuition and experience. Anyone familiar with the general pro- 
perties of low-speed flow can immediately formulate a fairly good distribution 
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for the large majority of body shapes. A small amount of experimenta- 
tion is sufficient to give such a person considerable additional "feel" for 
the proper distribution. Elements should be concentrated in regions where the 
body geometrybslope or curvature--changes rapidly with position, or where 
the flow properties, particularly the source density, are expected, to vary 
rapidly. For example, elements should be concentrated in all high-curvature 
regions, near exterior corners (especially the trailing edge of an airfoil), 
andmin cases of two bodies near each other--along the portions of their 
surfaces that face each other. Elements should not be concentrated near un- 
rounded concave corners; but if the corner is extreme enough to require 
rounding, a very great concentration of elements is necessary in that region. 
In regions where neither the geometric properties of the body nor the flow 
properties vary rapidly with position, elements may be distributed more 
sparsely. It should be remarked that if several small elements are in the 
vicinity of a .Large one, the accuracy is that associated with the large element. 
The foregoing is therefore an inefficient distribution, since no additional 
accuracy results from the additional number of small elements. The size of 
elements should change gradually between regions of concentration and 
regions where the distribution is sparse. The characteristic dimensions of an 
element should usually be no more than 50 per cent greater than those of 
adjacent elements. 

There is one special device that can be used only for two-dimensional 
cases. If there are two body contours that can be obtained from each other 
by an analytically known conformal transformation, then the potential flow 
about one body can be calculated analytically from the potential flow about 
the other. Therefore it is possible to obtain increased computational speed 
and accuracy by means of a prior adjustment of the body shape. A very com- 
plicated shape can often be transformed by a simple conformal mapping 
into a smooth shape, for which the flow can be accurately calculated with 
a comparatively small number of elements. In particular, it is easy to find 
transformations that remove all corners. For any body a number of such 
transformations are possible. 

3.3 The Effects of  the Elements at Each Other's Control .Points. Matrices of  
Influence Coe~cients 

3.3.1 General remarks. Once the body surface has been approximated by 
elements ~of the appropriate type, the elements are ordered sequentially and 
numbered from 1 to N, where N is the total number of elements. The exact 
order of the sequence is immaterial. It is simply a logical device for keeping 
track of the elements during the computational procedure. Reference will 
accordingly be made to the ith element and thejth element, where the integers 
i andjdenote  the positions of the elements in the sequence. 

Assume for the moment that the surface source density on the jth element 
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has the constant value of unity. Denote by ~ j  and V~j the potential and 
velocity, respectively, that are induced at the control point of  the ith element 
by a unit source density on the j th  element. The formulas for the induced 
potential and velocity form the basis of the present method of flow calcula- 
tion. They are obtained by integrating over the element in question the 
formulas for the potential and velocity induced by a unit point source and 
thus depend on the location of the point at which the potential and velocity 
are being evaluated aiad also on the geometry of the element. Since there is no 
restriction on the location of the control point of the ith element with respect 

to the j th element, the formulas for ~ j  and Vtj are those for the potential 
and velocity induced by an element at an arbitrary point in space. The 
dependence of the formulas on the geometry of the element means that 

there are three distinct sets of formulas for ~ j  and V~j, corresponding 
to the three different types of elements that are appropriate for use with 
two-dimensional bodies, axisymmetric bodies, and fully three-dimensional 
bodies, respectively. The axisymmetric case is further subdivided into the 
case where the flow is also axisymmetric and the case where the flow is not 
axisymmetric but has a known variation with circumferential position, for 
example, the so-called cross flow over an axisymmetric body. Specific for- 
mulas for the potential and velocity induced by an element are given in 
Section 4 for the various body geometries. This section describes their general 
nature and use. 

3.3.2 Three-dimensionalflow. For the plane quadrilateral elements used to 
approximate three-dimensional bodies, the unit-point-source formulas for 
potential and velocity can be integrated analytically over an element. This is 
most conveniently done by using a coordinate system in which the element 
itself lies in a coordinate plane, and thus coordinates of points and com- 
ponents of vectors must be transformed between the reference coordinate 
system in which the body surface is input and an "element coordinate 
system" based on the element in question. The analytic integration over the 
element produces rather lengthy formulas, whose evaluation is time con- 
suming. To conserve computing time, the effect of an element at points 
sufficiently far from the element is calculated approximately. This is accom- 
plished by means of a multipole expansion. In fact, if the point in question is 
farther from the centroid of the element than four times the maximum dimen- 
sion of the element, the quadrilateral source element may be replaced by a 
point source of the same total strength located at its centroid. With the 
accuracy criteria adopted, errors due to the use of  the multipole expansion 
or point-source formulas are apparently small compared with those arising 
from the basic approximation of the body surface by plane elements having 
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constant values of source density. The use of these alternative formulas 
therefore involves no loss of accuracy at all in the overall calculation. 

When this phase of the calculation has been completed, the result consists 

of the N x N matrices ¢~j and V~j that give the potentials and velocities 
induced by the elements at each other's control points for a unit source 

density. The vector matrix V~j is 

F, ,  = X,,7 + Y , , j +  Z, ,k ,  (3.3.1) 

where i, j, k are the unit vectors along the axes of the reference coordinate 
system in which the body surface is input, and the scalar matrices X~s, Y~j, 

Ztj are simply the components of V~¢. The normal velocity induced at the 
control point of  the ith element by a unit source density on the j t h  element is 

A~j = nt. V~j, (3.3.2) 

where nt is the unit normal vector to the ith element. The five matrices 
• tj, Xtj, Ytj, Ztj, and A,j do not necessarily have any zero entries. The 
number of elements used in three-dimensional cases is large enough for the 
handling of the amount of numerical data represented by these matrices to 
be a considerable problem. 

It should be mentioned that the i = jcase does not require special handling. 
Because the integration over art element is done analytically for nearby 
points, problems of infinite integrands or principal-value integrals, which 
might be expected from the discussion of Section 2, fail to materialize. 
The velocity induced by an element at its own control point has a magnitude 
of 2w and is directed along the element's normal vector. 

If the body has one or more symmetry planes that are also planes of 
symmetry or antisymmetry of the flow field these may be accounted for auto- 
matieally. Only the nonredundant portion of the body surface is approximated 
by surface elements. Once the potential and velocity induced at the control 
point of the ith element by thejth element has been computed, thejth element 
is reflected in each symmetry plane and the calculation repeated. The effects 
of the reflected elements at the control point of the ith element are either 
added to or subtracted from the effect of the j th element itself, depending on 
whether the pertinent plane is one of symmetry or antisymmetry. Thus, 
although potentials and velocities induced by elements all over the body 
surface must be computed, they are computed only at control points on the 

nonredundant portion and are added, so that the matrices q~j and Vtj have an 
order equal to the number of elements describing the nonredundant portion of 
the body surface. 
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3.3.3 Two-dimensional and axisymmetric flow. For two-dimensional flow 
and for axisymmetric flow, one integration can be performed in advance: an 
integration to infinity in both directions normal to the profile curve for.the 
two-dimensional case and an integration in the circumferential direction at a 
fixed radial distance and fixed axial location for the axisymmetric case. The 
integration does not depend on the approximation of the body by elements; 
it is possible solely because the source density does not vary in the direction 
of integration. Thus instead of considering as elements infinite strips or 
frustums of cones over which the unit-point source formulas are to be 
integrated, the elements may be considered to be the line segments joining 
the input points along the profile curve (Fig. 3a). The formulas that must be 
integrated over these line segment elements are not, of course, those for the 
simple point source but those for the integral of the point source in the 
proper direction. The singularity whose effect is integrated over a line- 
segment element is an infinite line source of unit strength for the two-dimen- 
sional problem and a ring source of unit strength for the axisymmetric 
problem. 

In two dimensions, the necessary integration over a line-segment element 
can be performed analytically. Again, this is most conveniently done by 
using a coordinate system based on the element. Since computing times for 
two-dimensional flows are rather small, the effects of all elements on each 
other's control points are computed from the formulas produced by the 
analytic integration. No approximate formulas are used. Just as in three 
dimensions, no trouble is encountered for the case i -- j. The velocity induced 
by an element at its own control point has a magnitude of 2rr and a direction 
normal to the element. 

The ring source that is appropriate for use with axisymmetric flows gives 
rise to a potential and a velocity at a point in space that may be expressed 
in terms of complete elliptic integrals. These expressions cannot be integrated 
analytically over a line-segment element, and resort must be made to numerical 
integration. The numerical-integration scheme used to calculate the effect of 
an element at a point in space uses a variable number of ordinates to effect 
the integration. The farther away the point in question lies from the element, 
the smaller is the number of ordinates used. Thus a saving in computing 
time is obtained with no loss in overall accuracy. The ease i = j does require 
special handling to numerically calculate the principal value of the relevant 
integrals. The velocity induced by an element at its own control point has 
both a normal and a tangential component, whose magnitudes cannot be 
predicted in advance. 

For both two-dimensional and axisymmetric flows, the results of this 

phase of the calculation are the N × N matrices qbij and V,.j. The vector 

l~j has only two components 
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Vu = X~j i + YzI J. (3.3.3) 

For the axisymmetric case, the component Ylj represents a radial component 
of velocity rather than a y-component. However, since all quantities are 
independent of circumferential location, it is sufficient to consider only 

the xy-plane. It is more convenient to resolve ~s  into normal and tangential 

components rather than x- and y-components. Let m and t~ be the unit 
outward normal vector and unit tangential vector to the ith element, respec- 

tively. The direction of t~ is given by the order of the input points; that is, tf is 
tangent to the profile curve in the clockwise sense for exterior flow about a 
single closed body. Then with the definitions 

A~j = n~" V~j and Bij = t~. Vtj, (3.3.4) 

V~j can be written as 

V~j = A~j ni -+- B~j~ (3.3.5) 

The scalar quantities Ao and B~ are the outer normal and clockwise tan- 
gential components, respectively, of the velocity induced at the control point 
of the ith element by a unit source density on the j th  element. In two- 
dimensional and axisymmetric cases there are only three matrices, ~ j ,  A~l, 
and B~j. Since the number of elements used in these cases is considerably 
smaller than that used in the three-dimensional case, the manipulation of 
these matrices is not a major problem. 

3.3.4 Cross f low about an axisymmetric body. In order to perform the 
circumferential integration in the case of an axisymmetric body, it is not 
necessary that the source density be constant in that direction. It is sufficient 
that the source density vary with circumferential location in a known way. 
The most important situation of this type is that of the cross flow about an 
axisymmetric body immersed in a uniform stream perpendicular to the 
axis of symmetry of the body. Because of the linearity of the problem, this 
flow may be combined with the axisymmetric flow about the same body to 
give the flow at any angle of attack. For the pure cross flow it can be shown~e> 
that the velocity potential and source density are both proportional to the 
cosine of the circumferential angle, where this angle is measured from the 
direction of the uniform stream. If the uniform stream is assumed to be 
parallel to the y-axis, the situation is as shown in Fig. 4. Any point in space 
lies in a plane through the symmetry axis (x-axis) at an angle 0 to the xy- 
plane. The velocity at this point may be resolved into two components 
parallel to this plane plus one component normal to it. The two velocity 
components parallel to the plane and the potential itself are proportional to 
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cos 0 and are thus characterized by their values at the point in the xy-plane 
having the same axial and radial location as the point in question. The velo- 
city component normal to the plane containing the point and the symmetry 
axis is proportional to sin 0 and is thus characterized by its value at the 
point in the yz-plane having the same axial and radial location. 

Fro. 4. Circumferential variation of velocity components for cross flow about 
an axisymmetric body. 

The present method of solution approximates the body surface in the 
same way that it does for axisymmetric flow. The source density on each 
element is assumed to be constant in the axial and radial directions and to be 
proportional to cos 0. The formulas for the potential and velocity due to a 
point source are integrated circumferentially. The results are corresponding 
formulas for a ring source whose strength varies as the cosine of the circum- 
ferential angle. These expressions are remarkably similar to those for a 
constant-strength ring source, and many of the expressions and functions that 
must be evaluated are common to both. The ring-source expressions are 
integrated numerically over the line-segment elements in the same way as they 

were for axisymmetric flow. The results are O~j and Vo, the potentials 
and velocities induced at the control points by the elements per unit value 
of source density. Here is meant unit value of source density on the line 

segment in the xy-plane. The vector t% has exactly the form given by 
(3.3.3), (3.3.4), and (3.3.5), although the numerical values are of course 
different. The control points are in the xy-plane, and ¢~/, A~, and B~j repre- 
sent potential, normal velocity, and tangential velocity, respectively, in 
this plane. To find the potential or velocity components normal and tan- 
gential to the meridian curve at any other circumferential location, these 
quantities must be multiplied by cos 0. 
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It remains to compute the circumferential component of velocity. Let 
e~j be the circumferential velocity induced by the j th  element at a point 
obtained from'the control point of the ith element by rotating it 90 ° circum- 
ferentially into the xz-plane. From the preceding discussion it is seen that 
this value characterizes the circumferential velocity at that axial and radial 
location. This quantity is related to ¢~j by 

1 
Otj = ~ ¢~t, (3.3.6) 

where p, is the y-coordinate or radial coordinate of the control point of 
the ith element. Only one of these matrices need be evaluated, and it is 
O=j that is computed. The close relationship (3.3.6) between the characteristic 
values of circumferential velocity and potential holds in general--not just 
for the effect of a single surface element. However, the two have different 
circumferential variations. The potential varies as cos 0, and the circum- 
ferential velocity varies as sin O. 

The treatment described in this subsection can also be used for the case 
of a body rotating about a line perpendicular to and intersecting its axis of 
symmetry, since the variation of all quantities with circumferential location 
is identical. The only difference is the onset flow. 

3.3.5 Special two-dimensional applications. Cascades and hydrofoils. It is 
clear that the use of a simple point-source singularity as a basis is not essential 
to the present method. All the foregoing began with the point source, but in 
the two-dimensional and axisymmetric cases what was finally integrated over 
the line-segment elements were the effects of line and ring sources. This idea 
can be generalized much further. Instead of the point-source potential 
given by (2.1), the solution can be built up by superposition of the potentials 
of  a wide variety of elementary singularities, which to be useful should 
satisfy all conditions of the problem except the condition on the boundary 
surface S. Thus if (1.2.7) and (1.2.9) were replaced by other conditions, new 
elementary singularities could be used, and the kernel of the integral equation 
(2.5) would then be derived from these singularities. Two such applications 
are discussed in this article. The first is the flow about an infinite two- 
dimensional cascade, an infinite set of identical bodies displaced successively 
a fixed distance parallel to a straight line. To reduce this problem to one l~or a 
single body surface, the proper elementary singularity is an infinite series of 
equal line sources spaced equally along a straight line. The required sum- 
mation of effects can be accomplished analytically. The second problem is 
that of a two-dimensional body performing steady translation in the presence 
of a free surface, for example, a hydrofoil. The potential of the proper ele- 
mentary singularity, whose analytic expression is quite complicated, satisfies 
a condition on the free surface and a radiation condition at infinity. For both 
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these problems, the procedure is exactly the same as that described above 

for the ordinary two-dimensional case. Matrices ~ j  and V~j are obtained, 
and the latter has the form given by (3.3.3), (3.3.4), and (3.3.5). The only 
difference lies in the specific expressions that are integrated over the line- 
segment elements. 

3.4 Approxbnation of the Integral Equation by a Set of Linear Algebraic 
Equations 

In all the cases discussed in the previous section, one result of the calcula- 
tion is the matrix A~S, whose entries are the normal velocities induced by the 
elements at each other's control points for unit values of source density. 
To obtain actual normal velocities, the entries of A~j must be multiplied by 
the proper values of the source density ~. In particular, the quantity 

N 
Z A~I o~ (3.4.1) 

j = l  

is the normal velocity at the control point of the ith element due to the 
complete set of surface elements. Clearly, (3:4.1) is the approximation of 
the normal velocity associated with the disturbance potential of the body 
surface. To obtain the prescribed normal velocities at the control points 
of all elements, (3.4.1) must be set equal to the proper value as given by 
(1.2.8) for every value of i. The result is 

N ~ 

Z A~j ~j = -- ni • ~ + F~, i = I, 2 . . . . .  N. (3.4.2) 
j = ]  

Equation (3.4.2) is a set of linear algebraic equations for the values of source 
density on the surface elements. This set of linear algebraic equations is 
the desired approximation of the integral equation (2.5). Notice that the 

onset flow velocity ~ and the prescribed resultant normal velocity F have 
been subscripted with i to denote explicitly the fact that these quantities may 
vary over the body surface. 

Methods of solving (3.4.2) for the set of source densities ,Tj are discussed in 
Section 5. Both direct and iterative methods are used. Normally, an iterative 
solution is used for three-dimensional flows and a direct solution is used for 

all other cases. In the usual case, the onset-flow velocity V~. is simply a 
constant vector of unit magnitude, and the prescribed normal velocity F 
is zero. In such a case,'the points on the body surface are the only input to 
the method. Nonuniform onset flows must in general be input by specifying 
the onset-flow velocity components at the control points of the elements. 
However, certain frequently occurring flows can be generated automatically. 
Tile most important is the circulatory onset flow due to a known distribution 
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of interior vorticity that is used for two-dimensional lifting airfoils. The 
rotational onset flow appropriate for rotating bodies can also be generated. 
For any fixed, impermeable ensemble of bodies in steady flow, the function 
F is zero. It is required for cases of area suction and certain unsteady flows, 
including the case of two bodies moving with respect to each other. 

For a given type of flow--two-dimensional, axisymmetric, or three- 
dimensional--it is evident from the description of the previous section that 
the matrix A~j (and all other computed matrices) depends only on the geo- 
metry of the body surface and is independent of the onset flow or prescribed 
normal velocity. A two-dimensional body has only one A~j for nil flows. The 
same is true for a three-dimensional body if symmetry is not utilized or if all 
onset flows have the same symmetry. An axisymmetric body has one A~ for 
all axisymmetric flows and another for all cross flows. Various onset flows 
or normal-velocity conditions simply provide different right sides for the 
equations (3.4.2). Solutions for several onset flows to the same body are 
often desired. For example, the flow about a two-dimensional lifting airfoil 
at any lift coefficient can be obtained from three basic flow solutions: those 
due to each of two uniform streams at right angles to each other and that 
due to a circulatory onset flow that corresponds to a pure circulation about 
the airfoil. If more than one airfoil is simultaneously present, there is more 
than one independent circulatory onset flow. Since only one matrix is in- 
volved, solutions for various onset flows are efficiently obtained at the 
same time. If a direct solution method is used for (3.4.2), the time required 
to solve for several onset flows is scarcely greater than that required for 
one. Of course, a complete set of values of source density ~j is obtained for 
each flow. 

3.5 Computation of the Flow Quantities of Interest 

Once the values of the source density ~ have been obtained as the solution 
of (3.4.2), all other flow quantities of interest can be obtained by ~elatively 
rapid direct calculation. The chief interest in most cases is in the flow on the 
body surface. Flow quantities on the body surface are computed only at the 
control points of the elements, by use of the matrices described in Section 3.3. 

In three-dimensional cases, the potential and velocity at a control point 
on  the body surface are calculated from 

N 

J=l 

1 / 

i = 1, 2 . . . . .  N. (3.5.1) 
N J 

J - I  

The velocity V~ at each control point is given in terms of its components 
along the axes of the reference coordinate syste m in which the body is input. 
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In actual computation, the scalar matrices X,j, Y,j, and Z~j are multiplied 
by o and summed. Notice that q~ is the perturbation potential due to the 

body surface, and "~, is the total velocity, including the effects of  the onset 
flow. For the majority of  applications these are the desired forms. Perturba- 

tion velocities may be calculated if desired. The components of  Vl are used 
to compute velocity magnitude and then pressure coefficient from (1.2.11). 
The latter quantity has meaning only for a uniform onset flow. 

In two-dimensional and axisymmetric cases the perturbation potential 
and tangential velocity at a control point of  an element are calculated from 

s=1 i = 1, 2 . . . .  , N .  (3.5.2) 
N 7, T,=ZB~j~j+ .V~i 

)=1 

Again the velocity is a total velocity, and the potential is a perturbation. 
The sign of  Tf is positive if this velocity is clockwise with respect to the 
profile curve of  the body and  negative i f  it is counter clockwise. The tan- 
gential velocity T~ is the only velocity component,  and the pressure co- 
efficient is calculated from it in the usual way. For the special two-dimensional 
applications of  cascades and hydrofoils the tangential surface velocity is 
calculated as shown in (3.5.2), but the potential is not calculated. 

For the case of cross flow about  an axisymmetric body, the velocity 
component  tangential to the profile curve of the body at a control point is 
calculated from (refer to Fig. 4 for definition of  velocity components) 

N 
T_o, = E B~:oj + ~/. V'~,, i = I, 2 . . . . .  N .  (3.5.3) 

j=l 

This also represents a clockwise velocity. The velocity component tangent to 
a meridian curve of the body at any circumferential angle 0 is Tz~ cos 0. The 
circumferential component ofvelocity at a point obtained by circumferentially 
rotating a control point 90 ° into the xz-plane is given by 

N ~ 

Ta, = ~ ~9~i as + j"  V~, i = 1, 2 . . . . .  N .  (3.5.4) 
j = l  

where 7 i s  the unit vector parallel to the y-axis and -V~ is the onset-flow 
velocity evaluated at the rotated location of the control point. Circum- 
ferential velocity components at other values of 0 are Ta~ sin 0. Both of  the 
velocity components (3.5.3) and (3.5.4) may be obtained as perturbation 
velocity components if desired. The perturbation potential at a control 
point is 

V~ = p~ (T3~ -- j"  VOW,), i = 1, 2 . . . . .  N . (3.5.5) 
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where ~ is the y-component or radial component of the control point. [If 
Ts~ is computed as a perturbation velocity component, nothing is subtracted 
from ~ Tsi in (3.5.5)]. 

Flow quantities may be computed at points off the body surface for all 
flow geometries. The coordinates of an off-body point ate input and used to 

obtain quantities ¢~tj and Ftj for j = 1, 2 . . . . .  N. These are calculated by 
the same formulas as those used for calculating induced potential and 
velocity at a control point of a surface element. It is simply a matter of 
using the coordinates of the off-body point in place of the coordinates of 
the ith control point. The potential and velocity at such a point are calculated 
in the form 

,v 

j= l  

(3.5.6) 
N 

(The use of the subscript i on ¢~j and V~ is perhaps misleading in this 
context, since the computation is at an off-body point, not at the control 
point of the ith surface element. The subscript has been retained to avoid 
introducing another symbol for a quantity that is calculated in exactly the 
same way as it is for points on the body surface. Perhaps i can be thought 
of here as denoting the ith off-body point.) At off-body points both the 
potential and velocity are perturbation quantities due only to the effect of 
the body surface, unless the onset flow is a uniform stream, in which case its 
effect can be added to the velocity. For all flow geometries, the velocity at 
off-body points is given by its components along the axes of the reference 
coordinate system. 

In many fluid dynamics applications the potential itself is of no interest. 
Accordingly, provision has been made for deleting that part of the cal- 
culation. This saves computation time and eliminates the storage require- 
ments for one matrix, except for the cross-flow case, in which the potential 
is calculated from the circumferential velocity. The reduction in computation 
time is not great, since much of the required calculation is common to ¢~j 

and V,~. Also, storage requirements are not an important factor except for 
three-dimensional cases. 

In applications it is often required to calculate certain basic flows and 
combine them linearly to obtain a particular flow or a set of such flows. 
The three common cases are: two-dimensional airfoils at prescribed angle of 
attack or prescribed lift coefficient, inlets at prescribed mass-flow ratio, 
and axisymmetric bodies at prescribed angle of attack. Provision has been 
D 



34 J . L .  HESS AND A. M. O. SMITH 

made for automatically combining basic flows. The basic flows for a lifting, 
two-dimensional airfoil are the nonlifting flows due to uniform streams 
at 0 ° and 90 ° inclination to the airfoil reference line and the flow due to a 
pure circulation about  the airfoil. The latter uses an onset flow due to a 
known distribution of  vorticity interior to the airfoil. Orginally the method 
used a point vortex of unit strength located at the center of curvature of  
the airfoil leading edge. It was later found that improved accuracy was 
obtained by using a vorticity distribution of  unit strength over the profile 
curve of  the airfoil. Since the velocity due to a vortex is simply that due 
to a source rotated 90 °, the normal and tangential components of  this 
circulatory onset flow at the midpoints of  the elements are found by summing 
the rows of the matrices Bzj and A,~,, respectively. The three basic flows for the 
airfoil are linearly combined to satisfy the Kutta  condition at the trailing 
edge and to give the prescribed angle of attack or lift coeffÉcient. Normally, 
a set of angles of  attack or lift coefficients is prescribed and the corresponding 
flows generated from the three basic flows. For  multiple airfoils, there is a 
circulatory solution for each airfoil and a Kutta  condition at each trailing 
edge. For  inlets, the basic flows are the flows at two distinct mass-flow 
ratios. They are obtained by blocking the inlet in different ways. The flows 
for all possible mass-flow ratios can then be obtained as linear combinations 
of  these two. For  a closed axisymmetric body in a uniform stream, the two 
basic flows are the axisymmetric flow and the pure cross flow. For  flow due 
to a uniform stream at an inclination a to the axis of symmetry of  the body, 
the velocity component tangent to a meridian curve at a circumferential 
angle 0 is (dropping the subscript i) 

Tcos  a + T2 sin a cos 0 (3.5.7) 

and the circumferential velocity component is 

Ta sin a sin 0. (3.5.8) 

If the onset velocity is assumed to have a unit magnitude, the surface pressure 
coefficient is 

C~, = 1 -- (Tcos  a + To sin ~ cos 0)o- -- T~ sin 2 a sin 2 0 (3.5.9) 

o r  

C v  = C v  o - -  TT.,_ sin 2 a cos 0 + sin 2 u (T °- -- T?, cos" 0 -- T~ sin-° 0), (3.5.10) 

where Cpo, which equals 1 -- T 2, is the pressure coefficient at zero angle of 
attack. These formulas give velocity and pressure at any a and 0"in terms 
Of the basic flow solutions. Although (3.5.10) resembles an expansion for 
small values of  a, this formula is in fact exact for any a. 
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In hydrodynamic applications, the integral 

dS (3.5.11) 
s 

over the body surface is of interest because it expresses the kinetic energy 
of the fluid motion. This integral is evaluated numerically by summing the 
relevant quantities over the surface elements. The results give the added 
mass in cases of pure translation and the analogous quantity in cases of pure 
rotation. 

Potential flow in the sense of this article is incompressible flow. It seemed 
valuable, however, to include in the method the ability to account, at least 
to first order, for the effect of Mach number. Accordingly, for the case 
of a uniform onset flow the method has the capability of performing a Goet- 
bert transformation. The body surface is stretched in the direction parallel to 
the free stream, the incompressible flow about the resulting body is calcu- 
lated, and the calculated velocities are transformed in the well-known 
manner.aT~ Although based on a small-perturbation theory, this method has 
proved quite accurate in a variety of fairly extreme flows, some examples of 
which are shown in Section 8. In two dimensions, other compressibility 
corrections are available that adjust incompressible pressures on the body 
itself (not stretched).OT~ In some cases these may be preferable to the 
Goethert transformation. 

3.6 Computation Time 

It is not possible to formulate precise general estimates of computing 
times for the present method, because so many factors are involved. More- 
over, such estimates are soon rendered obsolete by changes in computing 
equipment. It seems useful, however, to present some examples of computa- 
tion times for typical cases, to illustrate the magnitude of these times and to 
provide approximate rules for estimating them. All times apply to an IBM 
7094 computer, which performs a typical arithmetic operation in about 
10 ssec and transfers large amounts of data sequentially from low-speed 
storage (magnetic tape) to high-speed storage (magnetic core) at an approxi- 
mate rate of one complete number (36 binary places) every 100 ~sec. 

For flow about two-dimensional and axisymmetric bodies it is useful to 
divide the total computing time into two parts: the time required to solve the 
set of linear algebraic equations and the time for all other calculations, most 
of  which is required to calculate the matrices of induced potentials and 
velocities. These two times vary in different ways with the number N of 
elements used to approximate the body surface. The linear algebraic equations 
are solved by a direct method for two-dimensional and axisymmetric bodies. 
The time required to effect this solution is approximately proportional to 
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N a, and it is independent of the particular body or onset flow that is con- 
sidered. For N----100, direct solution of the linear algebraic equations 
requires about 0.6 min. The computation time required for all other lengthy 
calculations is very nearly proportional to NL For ordinary two-dimensional 
flows with N = 100, the time required for the remaining calculation is about 
one minute; that is, the total time is about 1.6 min. For an axisymmetric 
body, either in axisymmetric flow or cross flow, the additional calculations 
require about two minutes if N = 100, and the total computation time is 
about 2.6 min. For an equal number of surface elements a cascade requires 
roughly the same computing time as a single two-dimensional body, and a 
hydrofoil requires approximately the same time as an axisymmetric body. 

Computing times for a three-dimensional flow can be estimated only very 
approximately. Estimation is complicated because the method uses (1) the 
symmetry of the body surface, (2) approximate formulas for calculating the 
matrices of induced velocities and potentials, and (3) an iterative method for 
solving the set of linear algebraic equations. The computing time is not 
exclusively a function of the number of elements N, but it can also be signifi- 
cantly different for different body shapes and onset flows, particularly the 
time for the solution of the linear equations. Several times as many iterations 
may be required for convergence in one case as were required for another. 
Generally, computing time varies as NL The magnitude of the time required 
may be illustrated by an example. A solution for a single flow about a body 
with one symmetry plane (the common case in applications) and with 650 
elements on the nonredundant portion of the body typically requires an 
hour and a half. Unfavorable cases may require twice this time. A more 
detailed analysis of the variation of computing time for three-dimensional 
flows is contained in the report form of Ref. 3 together with several examples, 
but the specific times quoted apply to obsolete computing equipment. 

4. C A L C U L A T I O N  O F  T H E  P O T E N T I A L  A N D  V E L O C I T Y  
I N D U C E D  BY A S U R F A C E  E L E M E N T  AT A P O I N T  IN S P A C E  

As was stated in Section 3.3, the formulas for the potential and velocity 
at a general point in space due to a unit source density on a surface element 
form the basis of the present method of flow calculation. These formulas yield 

the induced potential and velocity matrices, ~,j and I/,~, which are used in 
the manner described in Section 3 to effect a solution. The following sections 
present the required potential and velocity formulas for the various types of 
surface elements that are used for different body geometries. 

4.1 Two-dimensional Bodies 

For two-dimensional flows all quantities are independent of the coordinate 
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z. Thus one integration can be performed in advance both in the expression 
(2.3) for the potential and in the integral equation (2.5). These surface 
integrals are reduced to singie integrals over the profile curve of the body. 
As was mentioned previously, this is equivalent to using a line source instead 
of a point source as the elementary singularity to be integrated over the line- 
segment elements that approximate the body's profile curve. The potential due 
to a line source of unit strength is obtained by integrating the point-source 
potential (2.1), and the corresponding velocity components are obtained by 
integrating the derivatives of this expression. The integrations for the velocity 
components are straightforward. Specifically, the velocity components 
at a point with coordinates x, y, 0 due to a line source of unit strength at 
alocationx=~,y=77,--~<z< ~are 

,~o ~ ( x -  ~:)dz x - 
g~  = - ~ x  = .~ [(x - ~)2 + ( y  _ ~)2 + : ] ~  = 2 

~aO 
(x - ~:)2 + ( y  _ ,~).~ 

(4 .1 .1)  

y - - ~  
co 

~9 ~ f ( Y -- 7) dz 
v~  = - ~ y  = j [ (x  - ~)2 + ( y  _ ,7)2 + : ] ~  = 2 (x  - ~)2 + (.v - 7)  2 

The integration for the line-source potential is more troublesome. Direct 
integration of  (2.1) from z = --oo to z = q-oo in a manner analogous to 
the integrations for the velocity components yields an infinite value of  
potential at all points (x, y, 0). This difficulty may be overcome by using 
a limiting process and taking advantage of  the fact that a constant may be 
added to the potential without changing any quantity of  physical significance. 
The potential at (x, y, (3) due to the line source is taken in the form 

L 

t.--,® V'[(x -- ~)2 _f~-y _ 7)2 + z 2] -- In 4L 2 (4.1.2) 
- -L  

The term in brackets is the potential of  a line source of  length 2L to which a 
constant depending on the length has been added. Performing the indicated 
operations gives 

= In (x  - ~:)2 + ( y  _ ,7)2 , (4.1.3) 

to which a finite constant may be added. The expressions (4.1.1) and (4.1.3) 
are the expected two-dimensional results except perhaps for sign and a factor 
of  two. 

To obtain the potential and velocity induced by an element at a point 
in space, expressions (4.1.1) and (4.1.3) must be integrated over a line- 
segment clement. This is most easily done in a coordinate system based on 
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the element. As is shown in Fig. 5, the line-segment element is taken as 
lying along the x-axis of the "element coordinate system" with its center 
at the origin. The positive y-direction is the direction of the outward normal 

T I 

'. "T'/. 

I 
_--- ×,~ 

FIG. 5. Integration over a line-segment element for the two-dimensional case. 

vector to the element. The length of the segment is denoted As to illustrate the 
fact that this length approximates an arc length along the profile curve of  the 
body. The velocity components at a point (x, y, 0) due to the element are 

As/2 

Vx = 2 (x -- ~:)e + y2 ----- In ~ _ As/2)~ ~ - - ~ ] '  

- A s l 2  

(4.1.4) 
As/2 

- -  A s ~ 2  

If  additive constants are neglected, the potential at (x, y, O) due to the element 
is 

A s / 2  

q ~ = - -  f ln[(x--~:)2+y2]d~¢ 
- -  A s / 2  

= - - x V ,  - - y  V u - -  (As/2)In ({[.¥ + (As/2)] z +y2}  

{[x - (~s/2)]-" + y~-}) (4.1.5)  

Unlike the three-dimensional case, where it is natural Io require the potential 
to vanish at infinity, there is no obviot,s choice of additive constant for the 
expression (4.1.5), which is infinite at infinity. 

The inverse tangents in (4.1.4) are to be evaluated in the principal-value 
range from --~r/2 to +~/2.  The two inverse tangents may be combined 
by means of the tangent law in the form 

( t I t = 2 tan -1 x2 + yO ~ [As/2)o. (4.1.6) 
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where the inverse tangent is evaluated in the range from -Tr to ÷rr by 
taking into account the individual signs of the numerator and denominator of 
its argument. In either form it is clear that as y ~ -+-0, Vy ~ --2~r if Ix I < As~2 
and V ~  0 if Ixl > ±s/2. The midpoint, of the line segment is taken as 
x = 0, y = +0,  and the velocity induced by the element on its own control 
point has a magnitude of 2~r and is directed along the outer normal to the 
element as indicated in Section 3.3 (Vx is clearly zero for x = 0). The velocity 
component Vx is logarithmically infinite at the ends of the line segment, and 
the potential is finite everywhere except at infinity. 

Since the above formulas are written in a coordinate system based on 
the element, the coordinates of the point where potential and velocity are to 
be evaluated must be expressed in this system before these formulas are used. 
After Vz and Vy are computed, they must be transformed into the reference 
coordinate system in which the body shape was input, to obtain the com- 

ponents of V~j in the form (3.3.3). The computation o f~  gives ~u  directly. 
The above formulas can be written more compactly in complex notation. 

The real notation was used here to show the similarity to the three-dimen- 
sional case. 

4.2 Axisymmetric Bodies in Axisymmetric Flow 

For axisymmetric flows all quantities are independent of circumferential 
location. Thus, just as in the two-dimensional case, one integration can be 
performed in advance both in the expression (2.3) for the perturbation 
potential and in the integral equation (2.5). These surface integrals are 
reduced to single integrals over the profile curve of the body. As is mentioned 

t 
Y 

- -  I P[X,¥,O) 

Z -L.+ 

FIG. 6. A ring source of constant strength lying in the plane x = h. 
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in Section 3.3, this is equivalent to using a constant-strength ring source as the 
elementary singularity to be integrated over the line-segment elements that 
approximate the profile curve of  the body. 

The x-axis is taken as the axis of  symmetry. Figure 6 illustrates a ring 
source of  radius a lying in the plane x = b. If  the ring source is assumed to 
be of  unit strength, the potential due to the source at a point (x, y, 0) is 

i ad~b 2a i d~b 
~0 = - 7 -  = V'[(x -- b) ~ 4- y2 4- a 2 _ 2ay cos ~b] (4.2.1) 

where ~b is the circumferential angle around the ring source measured from 
the positive y-axis. The corresponding velocity components are 

i (x  - b) 
Vx = ~x = 2a J [(x -- b) 2 4- y2 4- a s _ 2ay cos ~b]-~ 

0 (4.2.2) 
y - cos 

+ y2 + a 2 _ 2ay cos ~]~ 
0 

By a series of substitutions and algebraic manipulations,~ I> these formulae 
may be expressed in terms of complete elliptic integrals. The results are 

4a K(k) 
~P -- V'[( Y 4- a) e 4- (x -- b)2] ' 

4a(x -- b) E(k) 
Vx = -(G .Z a)-2-+ (x .z ~)2] x/[( 3; L~ a)~-L~ (~-. ~-/~)~ (4.2.3) 

20 [ Y 2 - - a 2 - - ( x - - b ) 2  E(k)] 
Vu = Y  V[(Y 4- a) -'~ +-(x---~-b) ~;] K(k) 4- (y _ a) 2 + (x -- b) 2 

where K(k) and E(k) are the complete elliptic integrals of  the first and second 
kind, respectively. Their argument is given by 

4 ay 
k 2 = (4.2.4) ( y  + a) 2 + ( x -  b) 2" 

These are the equations that must be integrated over a line,segment element. 
Consider a typical line-segment element as shown in Fig. 7. For the 

axisymmetric case no simplification results from using a coordinate system 
based on the element. The calculation is performed in the reference co- 
ordinate system, except that it is convenient to translate the origin of  co- 
ordinates to the point on the axis of  symmetry that lies directly below the 
midpoint of  the segment. The slope angle of  the segment with respect to the 
positive x-axis is denoted by ft. Distance along the line segment measured 
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from the midpoint is denoted by s, and the length of the segment is As. 
The y-coordinate of the midpoint of the segment is designated by yo. For a 
point along the line segment the parameters of the ring source are 

a = y 0  + ssin/3, 

b = s cos # 
(4.2.5) 

The potential and velocity induced by the element at the point (x, y, 0) are 
obtained by substituting a and b from (4.2.5) into (4.2.3) and integrating 
the results with respect to s from --As/2 to q-As/2. Since the integration is 
performed in terms of s, no special handling is required for vertical elements 
having ~ = ~r/2. 

Y ~(X,Y,O) 

¥o 

~ X  

Fro. 7. Integration over a line-segment element for the case of an axisymmetric 
body. 

The required integrations are performed numerically by Simpson's rule. 
The line segment is divided by equally spaced points into subsegments; that is 
the element is divided into subelements. The number of subelements is taken 
as 16 ~/rmln rounded to the nearest even integer, where rmin is the distance 
from the point (x, y, 0) to the nearer of the endpoints of the line segment. 
Thus the farther the point in question lies from the element, the fewer the 
number ofsubelements used in the calculation. The minimum number of sub- 
elements is two. The constant 16 used to select the number of subelements 
was determined by trial and error to give good results, but other choices 
are certainly possible. 
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The above procedure cannot be used for calculating the effect of the 
element at its own midpoint. The expressions (4.2.3) for the velocity com- 
ponents Vx and V u are singular for x = b, y = a. In the translated coordinate 
system, the midpoint has coordinates x = 0, y = yo, and the singularity 
occurs for s = 0. The singularity is of  the form 1Is and is thus not integrable. 
The required integrals must be considered principal values. (If expressions 
(4.2.3) are combined to give velocity components normal and tangent to the 
element, the expression for normal velocity is logarithmically infinite at 
s = 0 and is thus integrable. However, such an approach does not seem to 
have any advantage over the one described below.) Evaluation of  these is 
carried out in the following way, some aspects of which are illustrated in 
Fig. 8. A certain distance d is selected. The portion of  the line segment within 

\~" ~F ~ t. 

1 
INTEaRAk$ EVALUATED BY 
NUMERICAl. INTEGRATION USING 
ORDINARY GUBELEIdENT$ 

INTEGRALS EVALUATED 
BY 8ERIEI EXPANSION 

, , . /  ',J~" b ~ \ 

x 

FI¢3.8. The singular subelement. 

the distance d of  the midpoint is designated the singular subelement. The 
expressions (4.2.3) are expanded in terms of s/yo, where this quantity is 
assumed to be small. The resuitt 1, 5~ in each case is a term proportional to 
1/(s/yo) plus a power series in S/yo plus another power series in s/yo multiplied 
by In (s/yo). These expansions are integrated from s = - -d  to s = +d ,  to 
obtain the effect of  the singular subelement on the midpoint. Since the inte- 
gration interval is symmetric about s = 0 and 1/(s/yo) is an odd function, 
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the contribution of this term is allowed to cancel out, and thus, effectively, 
the integrals are evaluated as principal values, All other.terms in the expan= 
sions are integrable. In each case the result of the integration is a power series 
in d/yo plus another power series in d/yo multiplied by In (d/yo). The contri- 
butions of the singular subelement to the potential and velocity at the mid= 
point are 

1 d 212_ sin 2/3 

,1,3(1 + 2 sin~/3) In -t- • • .f ,  

i V~=-s in28 d l + i - ~  11+6sin s/~ 

= ( I ) { [  +'° (; oo,,  

')] } --2sin 4 ~ + 3 1 n  ~ + . . .  (4.2.6) 

In computation the above series are terminated after the third-order terms 
shown. The series for the potential in (4.2.6) has also been obtained by the 
above procedure. Since the expression (4.2.3) for the potential is only loga- 
rithmically infinite at s = 0, its expansion in terms of s/yo does not contain 
a term proportional to l/(s/yo). 

The contributions of the "ends" of the element, that is, the portions farther 
from the midpoint than the distance d, to the potential and velocity at the 
midpoint are evaluated as if these portions were separate elements. That is, 
express!ons (4.2.3) are integrated numerically over these portions in the 
manner described above. 

The selection of the semiwidth d of the singular subelement is the result 
of a compromise. On the one hand, it is desirable to have d as small as 
possible, to minimize truncation errors in the series (4.2.6) for the contri- 
bution of the singular sub¢lement. On the other hand, it is desirable to have 
d as large as possible, to reduce errors arising from the use of numerical 
integration near a singularity. The situation is complicated by the fact that 
the truncation errors of (4.2.6) depend on the magnitude of d/yo, while the 
errors arising from the numerical integration of (4.2.3) over the "ends" of 
tlie element depend on the magnitude lid. The troublesome elements are 
those having a small value of yo, which occur for example at the nose and 
tail of simple closed axisymmetric bodies. (Since, as stated in Section 3.2, the 
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points defining the body profile are restricted to nonnegative values of y in 
axisymmetric cases, no midpoint can have a zero y-coordinate.) The rule for 
determining d, which was developed by trial and error, is 

d = 0 . 0 8 y o  if 0 .08yo<As/2 ,  
(4.2.7) 

d = As~2 if 0.08 Yo > As~2. 

Thus for elements near the axis of symmetry, for which yo and As are of 
the same order of magnitude, the singular subelement is a small fraction of 
the total element. For elemeiats having a value of yo large compared to As 
the singular subelement is the entire element, and no contribution of the 
"ends" of the elements need be calculated. 

In the above calculation the midpoint is assumed from the outset to 
lie on the element. Thus any contribution to the velocity that depends on 
the limiting process of approaching the surface is not included and must be 
added separately. As was stated in Section 2, the limiting process of approach- 
ing the surface gives rise to a velocity of magnitude 2~" (for unit value of the 
local source density) with direction normal to the local surface. In component 
form this velocity is 

V~' = -- 2~" sin fl, 
(4.2.8) 

V£' = 2rr cos 8. 

Thus in general the velocity components induced by an element at its own 
midpoint consist of the sum of three contributions: the numerical integration 
of (4.2.3) over the "ends" of the element, the series (4.2.6) for the effect of 
the singular subelement, and'the components (4.2.8) arising from the limiting 
process of approaching the surface. The potential induced by an element at 
its own midpoint consists of  the sum of contributions from the first two of 
these three. 

Since a coordinate system based on the element is not used, the above 
formulas for velocity components induced by an element at the midpoint of 
any element, including itself, directly yield X~j and Y~j, the components 

of V~j in the reference coordinate system (Eq. (3.3.3)). 
When formulas (4.2.3) are used to compute quantities at points off the 

body surface, special treatment is required for points on the axis of symmetry. 
It can be seen that Vy is indeterminate for y = 0. However, it is clear from 
symmetry that in  this case Vy = 0, and this value is simply used instead 
of the formula for Vy. 

4.3 Axisymmetric Bodies in Cross Flow 

If an axisymmetric body is immersed in an onset flow that is a uniform 
stream in a direction normal to the body's axis of symmetry, the velocity 
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potential and source-density distribution are proportional to the cosine of 
the circumferential angle. There is no other dependence on circumferential 
location. This fact, which was first stated by Lotz/TM is discussed at some 
length in Ref. 2. Here space permits little elaboration on the brief discussion 
of  subsection 3.3.4 and the general illustration of the flow contained in 
Fig. 4. The fact that the dependence of  all quantities on circumferential 
location is known in advance for all body shapes permits this basically three- 
dimensional flow to be calculated without resort to fully three-dimensional 
techniques. I n  fact, computing times are scarcely greater than those for the 
case of axisymmetric flow. The same approach may be used for all flows having 
this circumferential variation. In particular, this includes the case of an 
axisy.mmetric body rotating about a line normal to and intersecting its axis of 
symmetry. 

Since circumferential variations are known in advance, this case is similar 
to that of  axisymmetric flow in that an integration in the circumferential 
direction may be performed in advance and all surface integrals reduced to 
single integrals over the profile curve of the body. This is equivalent to 
using a ring source whose strengt h is proportional to the cosine of the 
circumferential angle as the elementary singularity to be integrated over the 
line-segment elements that approximate the profile curve of the body. 

Again the x-axis is taken as the axis of  symmetry of the body, and the 
y-direction is the direction of zero value of circumferential angle. For the 
cross-flow case this means that the uniform onset flow is parallel to the 
positive y-axis, and for the rotating body the axis of rotation is parallel 
to the z-axis. Figure 9 illustrates a ring source of radius a lying in the plane 
x ---- b. The strength of the ring source is cos ~b, where ~b is the circumferential 
angle around the.ring. In computing the potential and velocity induced by 
this ring source at a point in space with coordinates x, y, z, it is convenient to 
introduce cylindrical coordinates y = R cos 0, z = R sin 0. The potential 
at this point due to the ring source is 

focos+d+ f a c o s ~ d ~  
~0 = r -- V'[(x - -  b )  2 -t- R 2 q -  a z - -  2 R  a cos (0 -- ~b)]" (4.3.1) 

By a change of  variable this can be written 

~r 

j " cos ~ d~ 
q0 ---- 2a cos 0 x/[(x --- b) 2 q- R e q- a 2 -- 2R a cos ~b]" (4.3.2) 

o 

The equivalence of (4.3.1) and (4.3.2) expresses the fact that a source density 
that varies as the cosine of  the circumferential angle gives rise to a potential 
that also varies as the cosine of circumferential angle. That the converse 
of  this statement is also true is due to the fact that the statement holds 
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for all harmonics; that is, a source density that varies as cos m~b gives rise 
to a potential that varies as cos m0 for all integer values of  re. 

~ ( X , Y , Z )  

x 

FIG. 9. A ring source whose strength is proportional to the cosine of the circum- 
ferential angle. 

The axial, radial, and circumferential velocity components at the point 
(x, R, 0) due to the ring source are 

V~c = - -  = 2 a c o s 0  
~.v [(x - / 0  2 

iq f 
V~ = - - i R = 2 a c o s 0  

O 

I ~q 2a sin 0 i 
V° = - R i0--  R 

iJ  

(x - b) cos ~b d e  
, R 2 a2 -'r + - -  2 a R  cos ~/~]~' 

(R -- a cos ~b) cos ~ d~/~ 
[(x - b )  2 + R 2 + a 2 - -  2 a R  cos ~b]~' 

cos ~b d~b 
\ [(x h)"- -~ R'-' ~ a e - -  2 o R  cos ~b]" 

(4.3.3) 

These expressions explicitly exhibit the circumferential behavior that was 
discussed in subsection 3.3.4. At any point the potential and the axial and 
radial velocity components,  which are the components in the plane containing 
the point and the body's axis of  symmetry, vary as cos 0. These quantities 
are characterized by their values for 0 = 0, that is, their values at a point 
in the xy-plane having the same x and R. The circumferential velocity com- 
ponent, which is the component normal to the plane containing the point and 
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the body's axis of symmetry, varies as sin O. This quantity is characterized 
by its value for 0 = rr/2, that is, its value at the point in the xz-plane having 
the same x and R. The characteristic values of the potential and the cir- 
cumferential velocity differ only by a factor equal to the radial coordinate 
of the point in question; that is, 

[qqo-0 = R[V,~],~=~,,~.. (4.3.4) 

It is clear that the statements of this paragraph depend only on the fact that 
the potential varies as cos 0 and are not related to the fact that the quantities 
in question are due to a ring source. 

In the detailed calculation the circumferential dependence is not directly 
considered, and the calculated results have no explicit circumferential 
dependence. The variations of quantities with 0 need be kept in mind by a 
user of the method only when he is considering the flow at a particular 
value of  O. The essential quantities are the coefficients of sin 0 and cos 0 in 
(4.3.2) and (4.3.3). These are independent of 0 and may be evaluated on the 
assumption that the point to which they are applicable lies in the xy-plane. 
Thus in calculation R is replaced by y, which becomes in a sense a radial 
coordinate, and the factors of sin 0 and cos O are ignored. The computation 
is reduced to one in the xy-plane, just as in the axisymmetric case. 

Subject to the above interpretation, the velocity components at a point 
with coordinates x and y due to a ring source of radius a in the plane x = b 
a r e  

i (x - b) cos ¢, de, ~]~' 
V z  = 2 a  [ ( x - -b )  2 + y2  + a 2 _ 2 a y  c o s  

o 

"i ( y --  a cos ~b) cos ff dff 
P', = 2a [(x -- b)  z .q- yZ -4- a 2 - -  2ay-cos?]l '  

0 

(4.3.5) 

2a i cos ~ d~ 
vo = )- b) 4- 4- 

o 

A corresponding expression for the potential is not required, since that 
quantity is finally, calculated from the circumferential velocity as described 
in Section 3.5. 

The same substitutions used for the axisymmetric case and some algebraic 
manipulation enable the formulas (4.3.5) to be expressed in terms of complete 
elliptic integrals in the formt 2) 
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Vx--- - -  --2(x -- b) [K(k)-- y2 + a 2 + (x -- b) 2 . . . .  ] 
y V [ ( y  + a) 2 + (x - b) 2] ( y  - -  a) 2 + (x - b)2 lztK)J ' 

Vu "= y2 ~/[( y + a)e + (x -- b) 2] [(x -- b) 2 + a e] K(k) 

[(x -- b) 2 + a2] 2 + ye [(x -- b) 2 -- a 2] E(k)], 

J 
2 [,2 + o2 + , x _  . . . .  ] 

(4.3.6) 

Again, K and E denote complete elliptic integrals of the first and second 
kinds, respectively, and 

k2 _ 4ay 
- -  (y  + a) 2 + (x -- b) v (4.3.7) 

which is identical with (4.2.4). A comparison of the formulas (4.3.6) with 
the corresponding expressions (4.2.3) for the axisymmetric case reveals their 
considerable computational similarity. Not only are the elliptic integrals 
the same in both cases, but many algebraic quantities are common. The two 
sets of formulas may be calculated together in only a little more time than 
that required for one set. 

To obtain the velocity components induced by an element at a point in 
space, formulas (4.3.6) must be integrated over a line segment. This is 
accomplished in exactly the same way as in the axisymmetric case. For points 
not on the element, that is, for all points except the midpoint of the line 
segment, the integration is performed numerically in the manner described in 
Section 4,2. 

The effect of the element at its own midpoint is calculated as the sum 
of three contributions, just as in the axisymmetric case. The singular sub- 
element is as shown in Fig. 8, and its contributions to the velocity components 
at the midpoint are obtained by integrating expansions in S/yo as described 
in Section 4.2. The results are 

V I = - 2  2 + s i n  2 B + I n (  -r 

x [ 9 - 4 3 s i n e B + 6 s i n 4 B + ( 2 7  - 2 4 s i n e B )  ln (~ d ) ]  + . . . } ,  

, d 1 1 ' d  '~- 
V o = 4  (~7o){ [ + In (~ d ) ] _  i ~  (.37o) 

× I0 sin 2/~ + (6 sin e/3 -- 9) In yo + . . . .  (4.3.8) 
J 
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The series are terminated after the third-order terms shown, and d is deter- 
mined by (4.2.7). The contributions of the "ends" of the element are calcu- 
lated as if these portions were separate elements. The third contribution, 
that due to the limiting process of approaching the surface, is again given 
by (4.2.8) and nothing is added to V o. 

When the above formulas are used to calculate the velocity components 
at each other's midpoints, the results give the components X,j, .Y~s, and O,j 
directly. It is not necessary to perform a transformation into the reference 
coordinate system. 

Formulas (4.3.6) are singular for y = 0, that is, for points on the axis of 
symmetry. As was pointed out in Section 4.2, a midpoint of an element 
cannot lie on the axis of  symmetry, but this situation can arise for points 
off the body surface. For such points different equations must be used for 
the velocity components due to a ring source. Specifically, the velocity 
components induced at a point on the x-axis by a ring source whose strength 
varies as cos ~b are 

~ = o  
(4.3.9) 

4.4 Three-dimensional Bodies 

The integration of the basic point-source formulas over one of the quadri- 
• lateral elements used to approximate three-dimensional bodies is most 

conveniently done in a coordinate s~,stem for which the element lies in a 
coordinate plane. Specifically, the quadrilateral is taken to lie in the xy-plane 
as shown in Fig. I0. The positive z-axis (upward in Fig. 10) of  the coordinate 
system is in the direction of  the unit outward normal vector to the element. 
The four points at the corners of the quadrilateral are denoted by subscripts 
1, 2, 3, 4, where the numbering denotes the order in which the corner points 
are encountered as the perimeter of the quadrilateral is traversed in the 
clockwise sense as seen from the positive z-axis. The coordinates of the 
corner points are ~k, ~Tk, 0, where k ----- 1,2, 3, 4, and the maximum dimension 
of  the quadrilateral is denoted by t. For the purposes of the multipole 
expansion, the origin of the coordinate system is taken as the centroid of the 
area of  the quadrilateral, but this is not essential for the exact analytic 
integration. For definiteness, the x-axis of  the coordinate System is taken 
parallel to the vector from corner point 1 to corner point 3. This last choice 
is nonessential, and indeed it affects none of  the formulas of  this section 
except Eqs. (4.4.27), the formulas for the moments of the area. 

E 

~ a  2 

v~ = Vo = [(x - b)2 + aZ]V 

This expression is integrated over an element in the usual way. The potential 
is zero, since it equals Vo multiplied by the zero value of the y-coordinate. 
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It is desired to calculate the potential and velocity induced by the quadri- 
lateral at a point in space with coordinates x, y, z in the element coordinate 

~Y'~ P (X,YtZ) 

C~,,-,7,) 
FIG. 10. A plane quadrilateral lying in the xy-plane. 

system. The distance between this point and a point on the quadrilateral 
with coordinates ~, -q, 0 is 

r -- x/[(x -- ~)2 + ( y  _ 7/)2 q- z ~] (4.4.1) 

For a unit value of  source density, the potenlial due to the quadrilateral 
at the point (x, y, :)  is 

where A denotes the are,a of the quadrilateral. The integral in (4.4.2) can 
be obtained exactly by analytical means. The approach adopted here differs 
somewhat from that of  Ref. 3. First, a cylindrical coordinate system is intro- 
duced, whose axis is parallel to the :-axis and whose origin is the point 
(x, y, 0) as shown in Fig. 11. The polar angle 0 is measured clockwise from 
any convenient reference direction, which is shown as the negative x-axis in 
Fig. l I. Distance from the axis of  the cylindrical coordin~ite system is denoted 
by R. In terms of these variables, 

r -- ~/(R 2 + z 2) (4.4.3) 



CALCULATION OF POTENTIAL FLOW ABOUT ARBITRARY BODIES 5 l  

and thus 

R 

q0 = v(R~ .+_ z2 ) (4.4.4) 
0 

The R integration is carried from R = 0 to a point on the perimeter, and 
the O integration is around the perimeter in the clockwise sense. The contri- 
bution of  each side of the quadrilateral to the integral in (4.4.4) represents 
the potential of the plane triangle defined by the endpoints of the side and 

v.T} ( G,~2 ) ..._ 

S~ q (X,Y,O] 

FIG. I 1. Introduction of cylindrical coordinates. 

the point (x, y, 0). As the perimeter is traversed in the clockwise direction. 
the incremental angle dO is positive if the point (x, y, 0) lies to the right of 
the side and negative if it lies to the left. Thus when potentials of the triangles 
corresponding to all four sides of the quadrilateral are summed, the conlri- 
butions of the portions of the triangles outside the quadrilateral sum to 
zero, and the result is the potential of the quadrilateral itself. Now from 
(4.4.3), 

RdR 
dr  - -  ,v/(R, ~ - I - z  2) ( 4 . 4 . 5 )  
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and thus (4.4.4) becomes 

= ~ [ f dr] dO ---- ~ (r  - -  I z l )  dO ( 4 . 4 . 6 )  
izl 

Since z does not depend on position on the perimeter, this can be written 

= r d O  - (4.4.7) 

where A0 = 0 if  x, y, 0 lies outside the quadrilateral 
(4.4.8) 

f and A0 = 2~, if x, y, 0 lies inside the quadrilateral. 

Thus the second term of (4.4.7) is discontinuous as (x, y, 0) crosses a side 
of  the quadrilateral. The first term has an equal and opposite discontinuity, 
and thus the potential is continuous. (This last is due to the change of  sign 
of  dO along the side that is crossed.) 

The first term of (4.4.7) is evaluated by calculating the contribution of a 
single side to the integral and summing the results for all four sides. (Obvi- 
ously the results can be generalized to polygons having any number of  
sides.) To express the contribution of  the side between the points (~1, ~1, 0) 
and (~z,'q~, 0) to the integral of  (4.4.7), the following geometric quantities, most 
of  which are illustrated in Fig. 12, must be defined. The length of  the side is 

dis = x/[(~s -- ~1) s + (,~2 -- vl)z]. (4.4.9) 

--" / ,.-/\ 

\ 

(x,Y.01 
Fic. 12. Integration over a side of a quadrilateral. 

The cosine and sine of the slope angle of the side with respect to the x-axis 
are, respectively, 

E2 -- ~1 ,72 -- ,71 
Clo~-- dis and S i s -  dis (4.4.10) 
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A perpendicular to the side is drawn from (x, y, 0), and arc length st2 is 
measured along the side from the intersection of the perpendicular with the 
extension of the side. The positive direction of st2 is that from (~t, 71, 0) 
to (~2, 72, 0). The arc length associated with a general point on the side is 

5"12 = (~ -- x) C12 + (7 --  Y) S tz  (4.4.11) 

In particular, the arc lengths associated with the corner points (f~, 7t, 0) 
and (~2, 72, 0) are, respectively, 

,(1) = ( f l  - -  X) C12 + (r/1 - -  y )  S12 12 
and (4.4.12) 

s ' ~  = (f2 - x) C12 + (72 - y)  S12 

The signed perpendicular distance of the point (x, y, 0) from the extension of 
the side is 

R12 = (x -- ft) $19 - ( y  -- 70 Cm (4.4.13) 

This distance is positive if (x, y, 0) lies to the right of the side with respect 
to the direction from (~i, 7t, 0) to (~:2, 72, 0) and is negative if (x, y, 0) lies 
to the left. The coordinates ~:2, 7~ could replace 71, 7t in (4.4.13) without 
changing the value of RI~. The distances of the point (x, y, z) to the corner 
points (~t, 71, 0) and (~2, 72, 0) are, respectively, 

rt = v ' [ ( x - - ~ l )  2 + ( y - T x )  2 + z  z] 
and (4.4.14) 

r2 = "k,/[(X - -  ~2) 2 "Jr- ( y  - -  7'/2) 2 dr  Z 2] 

The required integral can be expressed in terms of the following two 
quantities: 

QI2 = I n  r2 +~1~ 1 rl + r g + d ~  + ~u)/ = In (4.4.15) 
=t2/ + r2 - -  d l 2 ]  

and 

z ~12| -- tan_ 1 J tg .=  sgn (R12) tan -t ~ r2 / r l / J  

[RI  Izl r24 ')] 
= tan-t  .__ m = _ _  _~2_i_~ 

L rtr2Rl~ + z 5"ts 5"t2 J 
(4.4.16) 

The second form of the logarithm in (4.4.15) is to be preferred, since the 
first is indeterminate along the extension of .the side. In the first form of 
(4.4.16), the inverse tangents are evaluated in the principal-value range 
--~r/2 to rr/2, and in the second fo.rm of (4.4.16) the inverse tangent is evaluated 
in the range --~r to ~r by considering the individual signs of the numerator 
and denominator of its argument. 
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The contribution of the side between (~1, 71, 0) and (~2, r/2, 0)to the integral 
of (4.4.7) is 

912 = RI~QI2 + Izl J12. (4.4.17) 

The contribution 9zs of the side between (~:2, ~z, 0) and (~z, ~Tz, 0) is found 
by advancing all subscripts and superscripts by unity in Eqs. (4.4.9) through 
(4.4.17) and similarly for the remaining sides of the quadrilateral. 

Thus the potential at the point (x, y, z) induced by the quadrilateral is 

- -  + + + - Izl A0. (4.4.18) 

The velocity components may be found by differentiating (4.4.18). I f  this is 
done, all algebraic terms resulting from the differentiation of the logarithms 
and inverse tangents sum to zero and the results are 

&p 
Vx = -- ~x = -- $12 Qle - $2:3 O2s - Ssa Osa - $41 Q41, 

b ~ 0  
l~u = - by - Clo. Qx,, + Co.3 Q2s + Caa Qa4 + Cal Q 4 1 ,  (4.4.19) 

Vz = - ~-z = sgn (z) [AS - Jx2 - J~.s - Js4 - J41]. 

These are the required equations. 
It may be verified from these equations that no difficulty is encountered 

in calculating the effects of an element at its own control point. The Q's 
are singular only on the sides of  the quadrilateral. For z = 0 all the J ' s  
vanish. Thus •, Vz, and Vv are regular functions,'and for z = 0 

Vz = sgn (z) A0, (4.4.20) 

which is 2= sgn (z) for a point on the element and zero for a point outside. 
The control point is defined to have z = 0 + .  Incidentally, A0 is easy to 
evaluate; it is 2zr if R12, Rz3, Rs4, and Ral are all positive, and it is zero 
otherwise. 

Evaluation of formulas (4.4.18) and (4.4.19) is quite time-consuming, 
since at least four logarithms, four inverse tangents, and four square roots 
are required. The complicated nature of these formulas arises from the fact 
that they account for the effects of all the details of the shape of the quadri- 
lateral. It is intuitively plausible that if the point (x, y, z) is sufficiently 
far from the quadrilateral, the details of the shape of the quadrilateral are 
unimportant, and the potential and velocity at that point depend mainly 
on certain overall parameters that characterize that shape. This consideration 
leads naturally to approximation by means of a multipole expansion of  
the type commonly used in electrostatics. (19~ 
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Again, the situation is that shown in Fig. I0. It is desired to approximate 
the integral of (4.4.2) that gives the potential induced by the quadrilateral 
at the point (x, y, z). To accomplish this, the integrand of (4.4.2), which is 
simply l / r ,  is expanded in a Taylor series in ~ and ~/about the origin. The 
coefficients in the .series, being independent of ~: and 7/, may be taken out of 
the integral. Through terms of second order the result of thus expanding 
Eq. (4.4.2) is 

q: ---- Ioow --  (Ilowx + Iolw~) + ½ (I2oWxz + 2111Wxy + Io..,.wyy) + . . . .  

(4.4.21) 

where 
Into = $5 ~" ~,n dA (4.4.22) 

A 

and where w is the reciprocal of the distance ro from the origin of coordinates 
to the point (x, y, z), that is, 

1 1 
w = --- . . . . . . . . . . . . . .  (4.4.23) ro v,(x 2 + y2 + z2) • 

The subscripts x and y in Eq. (4.4.21) denote partial derivatives with 
respect to these variables. These derivatives depend only on the location 
of the point (x, y, z) with respect to the origin of coordinates and are inde- 
pendent of the shape of the quadrilateral. On the other hand, the quantities 
1,,,,, depend only on the shape of the quadrilateral and are independent of the 
location of the point (x, y, z). They may be evaluated once and for all for 
each quadrilateral. The I,,ra are the moments of various orders of the area 
of the quadrilateral about the origin. In particular, 10o is just the area of 
the quadrilateral, 11o and I01 are the first moments, and 120, lxl, and 102 are 
the second moments or "moments of inertia". Higher order terms of the 
expansion consist of products of higher order derivatives of w and higher 
order moments of the area. Such an expansion may be rigorously shown 
to converge if the point (x, y, z) is farther from the origin than any point 
of the quadrilateral. 

The designation multipole expansion arises from the fact that the various 
terms in Eq. (4.4.21) may be interpreted as the potentials of point singularities 
of various orders located at the origin. Thus the first term is the potential ' 
of a point source. The second term consists of the potentials of two point 
dipoles, whose axes lie along the x-axis and the y-axis, respectively. The 
third term contains the potentials of the three independent point quadrupoles 
with axes in the xy-plane. The strengths of the singularities are the various 
moments of the area of the quadrilateral. The effect of each succesfive higher 
order singularity decreases with a successively higher power of the distance 
ro. Thus the expansion (4.4.21) may be interpreted as giving the effect of the 
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quadrilateral in terms of its overall.geometric properties "in order of their 
importance" at some distance from the quadrilateral. 

In actual calculation the expansion (4.4.21) is n o t  carried beyond the 
second-order terms shown. Since the centroid of the area of  the quadri- 
lateral is used as the origin of coordinates, the first moments 11o and 101 
are zero. There are no dipole terms in (4.4.21), only a source plus quadrupole. 
The multipole expansion may thus be written 

q0 = Ioo w + ½(ho Wzz + 2 h l  wxv + lo2 wry),  

V z  = - -  8 x  - -  Ioo wz  - -  ½(12o w z x z  + 2111 Wxxu + Io2 wxvu),  

~q0 (4.4.24) 
V~ = ~y lo0 wv -- ½(12o w~xu + 2Ill  wzvv + 109 wuvv), 

Vz = ~z -- Ioo Wz - -  ½(120 wzxz + 2111 wzyz + 102 Wyyz), 

where  B' and its derivatives are 

w = r~ -1 wxxz = 3x(3p + lOx°-)ro 7 

w z  = - - x  r o  a w z z v  = 3 y  p r o t  

wv = - - y  r ;  s wzvv  = 3 x  q r ;  ~ 

Wz : --z roa Wvvy -- 3y(3q + 10y 9) r~ -~ 

wxx ---- --(p + 2x 2) ro5 wxxz -- 3zp rot 
- 

Wzu = 3 x y  ro ° wxvz  = - -  15x  y z r o 7 

wvu = - - ( q  + 2Y 2) ry 5 wuvz = 3z  q r o  7 

The distance ro is given by (4.4.23) and 

p = y 2 + z  ~ _ 4 x  2, 

(4.4.25) 

q = x2 + z2 - 4 f .  (4.4.26) 

These formulas appear somewhat lengthy. However, their evaluation 
involves only simple arithmetic plus one square root, ro. They thus require 

*much less computing time than the exact formulas. For the same reason, 
the multipole expression is faster than a numerical integration over the 
element, which employs point sources located at a set of  mesh points and thus 
must evaluate a square root for each mesh point. 

The moments Into may be expressed in terms of the coordinates of  the 
corner points, (¢~, ~t, 0) where k = 1, 2, 3, 4. The x-direction is taken 
as parallel to the direction from (¢1, "ql, 0) to (~3, ~72, 0). This choice gives 
~71 = "~3, and the moments required for use in (4.4.24) are 
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I 0 0  = , t ( f 3  - ~ i )  ('Tz - n4), 

ho = ~.~ (& - ~1) ['TR& - &) (& + & + ~a + ~)  

+ (,72 - '14) (f'~. + ~da + ~)  + & 7°- (~  + & + f3) 
- -  ~4 74 (~:1 "]- ~3 -'[- S¢4)], 

111 = ~,= ( f3  - -  s~l) [2~4 (7~ - -  7/4 ~) - -  2~:2 ('O~ - -  ~ )  

+ (&  + &)  (73 - ,74) (27z + ,~2 + 74)], 

/03 = T½ ( f s  - f l )  (,72 - 74) [(71 + 72 + 714) 2 - ,n(72 + 74) - 72,74]. 

(4.4.27) 

If the point (x, y, z) is far enough from the element, the quadrupole 
terms of (4.4.24) are not required. The quadrilateral, may be approximated by 
a point source at its centroid. This is equivalent in accuracy to a source 
plus dipole. For the point-source calculation there is. no need to use a co- 
ordinate system based on the element, and the calculation may be performed 
directly in the reference coordinate system in which the body was input. Let 
Xo, y o ,  Zo be the reference coordinates of the centroid of the quadrilateral, 
and let x', y', z' be the reference coordinates of the point where potential 
and velocity are to be evaluated (the point (x, y, z) in element coordinates). 
If  the element is approximated by a point source, the potential and velocity 
.components are calculated from 

1 
m ~ 0 0 ~  

9~ - -  ro 

X t - -  X O  

V :  - - -  I o o ,  

y '  - -  y o  
V v -  ~ Ioo, 

r o 

Z t ~ Z o  

V z  - -  - -  I 0 0 ,  

w h e r e  

(4.4.28) 

ro - -  v ' [ ( x '  - Xo) 2 + ( y'  - yo) 2 + (z' - Zo)21 (4.4.29) 

The distance ro is the same as that of Eq. (4.4.23), but here it is calculated in a 
different coordinate system. 

Thus there are three sets of formulas for calculating the potential and 
velocity induced by an element at a point in space. The choice of which set 
to use is determined by the value of the ratio ro / t ,  where ro is the distance 
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of the point in question from the centroid of the quadrilateral and t is the 
maximum dimension of the quadrilateral as shown in Fig. 10. If ro/t > 4, 
the point-source formulas (4.4.28) are used, and the calculation is performed 
directly in the reference coordinate system. If ro]t < 4, the coordinates of 
the point in question are transformed into the element coordinate system. 
Then if ro/t > 2.45, the multipole formulas (4.4.24) are used, but if ro/t < 
2.45, the exact formulas (4.4.18) and (4.4.19) are used. In the latter two cases 
the calculated velocity components must be transformed into the reference 
coordinate system. These distance criteria were chosen somewhat arbitrarily 
and appear to be conservative. Any errors arising from the use of the point 
source or multipole formulas are apparently negligible with respect to those 
due to the basic approximation of the body surface by plane elements having 
a constant value of source density. Thus the use of the approximate formulas 
involves no loss at all in overall accuracy. The savings in computation time 
are quite significant, however. In a typical ease about 90 per cent of the 

entries of the induced potential and velocity matrices, q~,j and V~j, are 
calculated from the point-source formulas, and the remaining 10 per cent 
are divided, abou t evenly between the multipole and the exact formulas. Since 
the criteria for deciding which set of formulas to use is based on the value 
of ro/t, the number of entries of the induced potential and velocity matrices 
that are computed by the exact and the multipole formulas is approximately 
proportional to the element number N. The total number of entries is pro- 
portional to N 2. Thus the greater the element number, the greater the per- 
centage of entries computed by the point-source formulas. 

4.5 Hydrofoils 

4.5.1 The fundamental source function. A hydrofoil is an airfoil moving 
beneath the free surface of a liquid that is subject to the force of gravity. 
It is the presence of this free surface that not only distinguishes hydrofoils 
from airfoils but also greatly complicates the problem of calculation. The 
study is restricted to the problem of steady motion in infinitely deep water 
or other liquid, and, as in the preceding sections, viscosity is neglected. Again, 
the location of the boundary must be known, which essentially restricts the 
treatment to hydrofoils free of cavitation. If local cavitation occurs and the 
edge of the bubble is known, the method of course remains applicable and 
calculation of slightly cavitated flow may be accomplished by some sort of 
iterative process. Another restriction must be mentioned, one that does not 
exist in an unbounded atmosphere. The depth below the surface is a parameter 
that enters into the formulation. Therefore a two-dimensional flow requires 
the body not only to be two-dimensional but also that all sections be at the 
same depth, for otherwise the flow would change from section to section 
laterally. 
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The flow situation is shown in Fig. 13; note that the hydrofoils are located 
in the lower halfplane and that the onset flow i's V.~ia the x-direction. Because 
the fluid is assumed to be inviscid, free of. vorticity, and incompressible, 
Laplace's equation applies as usual. The mean free surface is at y = 0, and 

y,T 

y,O ×,7 ~ - - 7 ~ . . ~  __. r 

"V'o= 

FJa. 13. Diagram for analysis of flow about hydrofoils. 

distortions from this mean are indicated by r/, as in the sketch. The pressure 
and velocity can be related by Bernouilli's equation, which is written here in a 
form slightly different from that of  (1.2. I0), to exhibit a term for hydrostatic 
head, as follows: 

p/p + ½ I vl = + g y  = e o n s t .  ( 4 . 5 . 1 )  

For small disturbances it is easily shown that if p is constant on the free 
surface, (4.5.1) can be linearized to yield 

Oq0 
V~o ~x (x, 0) = - -g  r/ (4.5.2) 

where 9~, as usual, means perturbation potential. After the boundary-value 
problem is solved, this relation can be conveniently used to compute wave 
height. A second condition, arising from kinematic considerations requires 
that the free surface ~(x) be a streamline. In mathematical terms the usual 
approximate statement of  this condition is 

&P &7 (x, o) = r,® (4.5.3) 

Elimination of-,7 between (4.5.2) and (4.5.3) yields 

t9~9~, 09~ g 
tx, 0) q- v ~y (x, 0) = 0, where v -- V~" 

This is the lineadzed free-surface condition that will be satisfied. 

(4.5.4) 
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Another characteristic that distinguishes this problem from the usual 
problem of incompressible aerodynamics is that there are waves in the fluid 
downstream of the moving body, and any method of solution must exhibit 
this feature. In the problem of steady motion of a hydrofoil in infinitely deep 
water, the set of conditions that must be met by an elementary singularity 
is then as follows: 

1. V 2 9 -- 0 for y < 0 except at the singularity, 

~0 g 
2. 8 2 9 ( x , 0 ) + v  (x, 0 ) = 0 ,  wherev------ 

(4.5.5) 

3. lim grad ~ ----- O, 
y-.~ --cO, 

4. lim gradq~ = 0 .  

Further details are contained in Refs. 7, 20, 21, and 22. Equations (4.5.5) 
replace (1.2.7) and (1.2.9), which are appropriate for the ease of an unbounded 
fluid. The distribution of singularity over the body surface is determined from 
(1.2.8) as usual. 

Different types of problems may need different elementary singularities. 
As in unbounded potential flow, for ordinary three-dimensional bodies the 
elementary singularity is a point source, which may be integrated into lines or 
rings to give the elementary singularities appropriate for two-dimensional or 
axisymmetrie bodies, respectively. If the body is near an impervious plane 
wall, the elementary singularity whose potential inherently satisfies the 
additional boundary condition imposed by the wall is a source plus its 
image of the same sign. In the case of a cascade of bodies (see Section 4.6) 
the elementary singularity is an infinite grid of equally spaced parallel line 
sources of constant strength. Similarly, the elementary singularity that meets 
the hydrofoil requirements (4.5.5) has a potential that is the real part of the 
following expression for the complex potential, f(z): 

f(z) = Kin (z -- c) + t(In (z -- ~) -- 2rri/(exp [-- iv(z -- ~)] 
~5 

+ 2/(.pv I exp [--ik(Zk_v-- 6)] dk, (4.5.6) 

0 

where PV represents the principal value. At this point it becomes convenient 
to use complex algebra with notation defined as follows: 

K = Q + iF, complex source st~'ength, per unit length 
Q = line source strength 
/-" = vortex strength 
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z = x + iy,  coordinates of a general point 
c = a + i b, coordinates of the complex source 

k = a parameter of integration 

A bar over a symbol denotes complex conjugate. 

The geometry of the complex source represented by (4.5.6) is shown in 
Fig. 14. Equation (4.5.6) is equivalent to Eq. (13.43) of Wehausen,t 2°) the 
two equations differing only in that Eq. (4.5.6) has a factor of 2~- and two 

ty  

IMAGE 
COMPLEX SOURCE 

~ ,  a - i b  

~......~--WATER 
SURFACE 

COMPLEX SOURCE 

. _ C , " + i b  

Flo. 14. The complex source and its image. 

signs that are opposite to the corresponding signs in Wehausen's equation. 
These are the sign o f / ' (K  = Q + iF) and the sign of the third term on the 
right side of the equation. The difference in signs is due to the opposite sense 
taken for positive vorticity and to the opposite direction of the onset flow. 
In Wehausen's formulation of the problem the wake is at the left of the 
source; in the present formulation it is at the right. 

As in the previous section, for purposes of setting up the integral equation, 
the velocity field is of primary interest. It is easily obtained by determining 
the complex derivative of (4.5.6) in the usual fashion; that is, (4.5.6), together 
with the well-known relation w ( z )  = d f / d z  = V x  - -  i v y ,  yields 

K /~ 
w ( z )  - -  z - -  c + z - -  e 2~gvexp [ - - i v ( z  - -  e)] 

_ 2 z ( i P V  I kexp [ - - i k ( z  - -  ~)] 

O 

(4.5.7) 

The first term on the right of (4.5.7) contains the basic two-dimensional 
source, and the second contains the image of the source with respect to the 
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plane y = 0. The last three terms are corrections that make the entire func- 
tion satisfy the linearized free-surface conditions (4.5.5). Downstream, the 
quantities given by the last two terms have a reinforcing effect and upstream, 
the opposite. In this fashion a wake is developed downstream. Now consider 
the effect of  the magnitude of  V~ on the last two terms of  (4.5.7). When 
V~ is small, v is large. Then, according to condition 2 of  (4.5.5), q~u(x, O) = O. 
Thus, as in a common ground-plane condition, there is no flow through the 
plane y = 0. Inspection, and a small amount  of  calculation, will show that 
(4.5.7) satisfies this condition. Obviously, the last term approaches zero as v 
approaches infinity. As long as z -- ~ in the third term on the right contains a 
finite imaginary quantity, it too will approach zero as v approaches infinity. 
When Vo-~ is very large, v approaches zero. Then the condition 2 of  (4.5.5) 
reduces to qx~(x, 0) = 0. This condition can be met by a source of  strength Q 
whose image with respect to the plane y ---- 0 is one of  strength (--Q).  Al- 
though it cannot be seen simply by inspection, it can be shown that (4.5.7) 
reduces to such a pair of sources as v approaches zero. 

4.5.2 Integration ot,er a line-segment element. I f a  treatment similar to that 
for two-dimensional bodies is followed, the problem is to find the velocity 
components at a point z due to singularities of unit strength distributed over a 
line-segment element as sketched in Fig. 15. Consider a line source of  in- 
finitesim.'tl width such that 

K = K ds = (~r + i9,)ds . (4.5.8) 

L 

T 
_ Y 5~Jfc, 

e Z  

FIG. 15. Integration over a line-segment element. 

Now consider the first term on the right of (4.5.7). 
evaluation of the following quantity: 

K . . . . . . .  ° 

Z - - C  

£1 

• × 

Integration requires 
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To perform the integration, art expression for ds in terms of  c is needed. 
According to Fig. 15, the equation for a point c lying on the element is 
c = - - ih  q- s e ~p. Hence ds = e -Ip dc, and the above integral becomes 

¢1 

e _ t p f  dc z - - c 1  
-- K e-iP In - - -  . (4.5.9) K 

d Z - - C  Z - - C 2 "  
Ct 

A similar expression can be written for the image source. Integration of  the 
third term can be performed in a like manner. Finally, consider the definite 
integral. Upon introducing the relation ds = e~P d?, this becomes 

exp [ - - i k ( z  --  c'2)] " exp [ - - i k ( z  --  el)] dk 
2~e~# . . . . .  -k- ~ ~, dk  . . . . . . .  k - -  v 

o o 

Then the entire expression for the complex 
line-segment element can be written 

velocity W(z)  = Vz --  iVy of  the 

z - -  Cl  Z m c~t 
W(z)  = ~ e -tp In ........ + ~ e ip In - - -  _ 

z - -  C2 Z - -  C2 

+ 2~r ig e tD {exp [ - - iv ( z  - -  ~2)] 

- exp [ - i v ( z  - el)I} 

_ 2 f f O ,  p v [ i e x p [ - - i k ( z - - ? ' ) ]  
k - -  v d k  

o 
oo 

o 

(4.5.10) 

From this expression the flow due to either a source or a vortex may be 
obtained by setting K = e or ~ = iy, respectively. The flow due to an interior 
vortex is used as an onset flow to obtain a circulatory flow that is needed 
to satisfy the Kutta condition as stated in Section 3.5. No expression similar 
to (4.5.10) has been derived for the potential, because no need has arisen. 

4.5.3 Evaluat ion o f  the Def ini te  Integral.  Practical computation of  the 

coefficients in the large V~t matrices demands rapid evaluation of  the veloci- 
ties induced by a line-segment element of  unit strength. Evaluation of  
(4.5.10) constitutes no particular problem for a large computer except for the 
last terms, the two integrals of  the type 

I = P V ~  exp [ - - i k ( z  - -  ~)] dk. 
(4.5.1 1) k - - u  
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As will be shown, such integrals can be reduced to an expression containing 
the complex exponential integral, but that accomplishment is of  no great 
advantage, because there are no simple formulas, applicable over a wide 
range of  constants, for evaluating complex exponential integrals. Therefore a 
special method for evaluating them was developed, which involves the 
following three essential steps: 

1. Transform (4.5.11) in such a way that the exponential becomes real. 
2. Develop a rational-fraction approximation of this exponential that is 

valid over the entire range of 0, oo. 
3. Integrate the resulting expression by the partial-fraction process. 

To obtain a real exponential, consider contour integration according to 
Fig. 16. Let k --- r + hn. Then a pole exists on the real axis at r = v, and 
according to the sketch (Fig. 16) 

pvieXp[--ir(z--g)]dr+f +I +I exp[-ik(z-d)]dk=O ( 4 " 5 " 1 2 ) r - v  k--v 
0 2 4 5 

K : r ¢ i m  

I - -  Z,' 

FIG. 16. Contour integration for obtaining a purely real exponential. Line 1, 3, 
is the original path. Line 5 is the one for which the exponential is purely real. 

For  integrating along line 5 the angle w must be so selected that 
the exponential is purely real. This amounts to the requirement that 
Im [--ik(z -- 0)] = 0 or that, upon introducing the expressions for k, z, and 

m ( y  + b) -- r(x -- a) = 0, (4.5.13) 
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which gives 

m x - - a  
(o = tan -x - = t a n - 1 -  (4.5.14) 

r y + b "  

The sign of  oJ is opposite to the sign of x -- a, since y + b is always negative. 
It can be shown that for these conditions the integral along 4 is zero. 

The detour 2 around the point v in Fig. 16 will be above or below according 
to the sign of  oJ. Therefore the integral along 2 is 

.~ = -- (sgn a,)~ri exp [ - - i v ( z  - -  ~)]. (4.5.15) 
2 

Then if a substitution based on this special path of  integration is made, 
that is, i f  k is set equal to R(1 + i tan o~), where R is radial distance, and, 
finally, if  a scaling transformation is made to remove the constant in the 
exponential, the relation below is obtained. 

P V  exp [--ik(Zk - v-- O)] dk = (sgn oJ) izr exp [ - i v ( z  - -  e)] + t - -  iv (z  - -  e)  

o o 
(4.5.16) 

Substitution of  the expression on the right-hand side of  (4.5.16) with ~, = 0 
into (4.5.10) yields the formula 

W Q ( z )  = ¢ f e - t a  ln ~ - -  Cl + elD ln  Z - -  et-- 
c2 z ~2 

where 

+ 4~rie tD [88 exp [ - - i v ( z  - -  c2)] -- 81 exp [ - - i v ( z  - -  gl)]] 

- -  2 e ~p 
t - -  i v ( z  - -  ~2) t - -  iv (z  - -  ~l)  ' 

o o 

8t = 0 oJ1 > 0 z upstream of  el 

81 = 1 oJ1 < 0 z downstream of cl 

88 = 0 0,8 > 0 z upstream of  c2 

88 = 1 o,~. < 0 z downstream of  c2 

(4.5.17) 

The expression (4.5.17) supplies values of  u and v at any point z for use in 

forming the V~j matrix. In practice it is evaluated by means of  complex 
arithmetic. Step one is now accomplished, and what remains is the evaluation 
c tegrais of  the type 

i e - t  dt 
t - -  iv(z  - -  ?) 

o 
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where t is real. This is recognizable as an exponential integral form whose 
value is written as exp [-- iv(z  - -  ~)] E1 [-- iv(z  --  ?)]. Tables, for example 
Ref. 23, and formulas are available for evaluation of  this quantity. Tables 
are inconvenient for machine calculation, and the known formulas are not 
valid over the entire range of interest. Accordingly, a suitable formula valid 
for any value of the argument was developed. I f  e -t  is approximated by a 
rational fraction, the indicated integration can be performed analytically 
by breaking the integrand down into partial fractions. Representation of  e -t  
by the quotient of  a fourth-degree polynomial and a sixth-degree poly- 
nomial has been found to provide the desired accuracy with the minimum 
amount  of computation. The following is an approximation of  e - t  having 
equalized extremal errors valid from 0 < t < oo. Because all extremal errors 
are made equal, it can be considered the best approximation in the sense of 
Chebyshev. 

1 + p i t  + p2t 2 + pat a + p4t 4 
1 + ql t  + q2t 2 + qat a + q4t 4 + qst 5 + q6t 6 -~- c(t) (4.5.18) 

where 

px=--0 .23721365 

p 2 =  0.02065430 

pa=- -0 .00076330  

p 4 =  0.00000977 

IE(t)l ~< 1.6 × 10 -G for 

ql = 0.76273617 

q2 = 0.28388363 

q~ = 0.06678603 

q4 = 0.01298272 

q~ = 0.00087009 

q6 = 0.00029892 

0 < t , <  oo. 

The rational-fraction approximation of Step 2 is now available. When it is 
used, and the integration is performed by the partial-fraction method, the 
following formula results, where [ represents the complex quantities 
- - i v ( z -  ~ ) i n  (4.5.17). 

where 

i e - t d t  M + N 

t + ~ .  D 
+ ,(¢) (4.5.19) 

M = -- (1 + rnl~ + m2~ + rns~ + m4~ 4) In 

N = -- 7 (0.99999207 + nl~ + n2~ 2 + na~ + n4~ 4 + ns.~ 5) 

D = 1 + dl~ + d~.~ 2 + da~ ~ + d4~ 4 + ds~. 5 + d6~ 6 
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and where 

m1=0.23721365 

m2=0.020654300 

ma=0.00076329700 

m4--0.0000097687007 

141 ~< 7 × 10 -6 

o < < 

n1=--1.49545886 d1=--0.76273617 

n z =  0.041806426 d z : -  0.28388363 

nz=--0.03000591 d 3 =  --0.066786033 

n 4 =  0.0019387339 d a =  0.012982719 

n s =  --0.00051801555 d5=--0.00087008610 

de----- 0.00029892040 

~, = Euler's number --0.5772156649 

No explicit bound for the error could be developed. Therefore more than 50 
combinations of values of  ~ = ~: + irj were tried over the range 0.1 < --x, 
y < 20, and the results were compared with the values given in Ref. 23. The 
greatest error was less than that noted above, and most were less than one- 
fifth as much. When ~ becomes small it is known that EI(~) approaches 
(--In ~ -- y). Equation (4.5.19) approaches this limit very closely. 

4.6 C a s c a d e s  

A cascade is considered to be an infinite number of identical two-dimen- 
sional bodies, all having the same orientation and spaced at equal distances 
along a straight line. The cascade may be lifting or nonlifting, and  it is 
possible with certain restrictions to have an ensemble of cascades, each 
having a different body shape. The treatment and development of the ele- 
mentary singularity is generally similar to that of the previous section, 
in that complex notation is used. The full exposition of the cascade solution 
is given in Re/'. 4. 

The general flow under consideration is illustrated in Fig. 17. The onset 
flow field is unbounded and the flow is steady. Because of the infinite extent 
of the cascade and because the onset flow is uniform, the values of source 
density at corresponding points on the individual bodies must be equal. 
Let one of this set be called the reference source and assume it to be located 
at a point c = a + lb. Its complex potential is 

f(z) = K l n  (z -- c) . '  (4.6.1) 

The notation is the same as that listed after (4.5.6). Now for convenience, 
assume the cascade of sources to be vertical, and let the spacing be called S. 
Then the complex potential at some point z for the entire set of sources is 

f z )  = K O n  (z  - -  c) -q- In (z  - -  c q-- iS )  -~ In ( z  - -  c - -  i S )  q- In (z  - -  e -q- 2 i S )  

+ In (z  - -  c - -  2 i S )  + . . . ] ,  (4.6.2) 
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CASCADE I ~-r~ 

/" f 

FlO. 17. Vector diagram showing inlet and exit velocities, angles, and some 
parameters. 

which can be reduced to the following equation by combining pairs sym- 
metrical about the reference source: 

f ( z )  = K { I n ( z - -  c) + I n  [ (z - -  c) -~ + S z] + I n  [ (z - -  c) ~ -k (2S )  2] q - . . . }  

(4.6.3) 

The real part of  this expression is the potential of  the elementary singularity 
for the cascade, just as (4.1.3) is the similar expression for simple two- 
dimensional flows. A closed form equivalent to this infinite series will be 
presented later. Velocity components are obtained by differentiating (4,6.3), 
which gives the following result: 

1 2(z - c) 
dzdf _ w(z) ~ I"~, -- il/+1. = K z-~.- C -? . . . . . . .  (z -- c) 2 -+- S ~- 

2(z - e) ] 
+ (z - c)" + (2S)  2 + . . . .  j (4.6.4) 

This can be rearranged to yield 

d f  K~r I I 2¢r(z -- c) [rr 1 
dz  - -  S =(--~. e )  + S 2 + ~,~-(z - -  e)2/S "2 

1 

-? 4¢r~ -5 ¢r"(z - c)~/--ff '- + ] t  +5 ,  
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A well-known series, valid for complex numbers, is 

c o t h z = l + 2 z  1 +4rr ~ + z  2 +  , . ,  , 

Hence, (4.6.5) can be written as 

d f  K~- . ~-(z -- c) 
-S-- cotla g - - | l "  = ' .  

(4.6.6) 

(4.6.7) 

This expression is easily integrated to yield the following expression for 
the complex potential, which is the closed-form equivalent of (4.6.3). 

f = K In sinh ~r(z -- c) S (4.6.8) 

The method of integrating over a line-segment element is like that used in 
Section 4.5.2. Again let K = x ds = (~ + i~,)ds, and substitute in (4.6.7) 
to get 

C t  

K~. I c°th~(Z---C)ds" (4.6.9) " W ( z )  = s 

el  

But, as was seen in Section 4.5.2, ds = e-tD dc. Therefore 

,rx e_tp f coth z -- dc = -- -*P in sinh [~z -- c2)/S] g . ' 5 ( s - c )  K e [,r(z c l ) /S]"  W(z) 

(4.6.10) 

This formula supplies values of both Vz and Vy at any point z needed in 

forming the V~j matrix. For such calculations let ~c = 1. Vortex flows of 
unit strength are obtained by letting ,¢ = i. In the machine program (4.6,10) 
is evaluated by complex arithmetic. It does not appear possible to obtain by 
analytic integration a companion expression for the potential over a cascade 
of line-segment elements. 

5. S O L U T I O N  OF THE L I N E A R  A L G E B R A I C  E Q U A T I O N S  FOR T H E  
V A L U E S  OF THE S U R F A C E  S O U R C E  D E N S I T Y  

5.1 General Remarks 

The coefficient matrix A,j of the linear equations (3.4.2) for the values of 
surface source density is nonsymmetric and in general has no zero entries. 
Therefore, many results of  matrix theory cannot be applied, and many methods 
for solving linear equations either fail or are inefficient. Accordingly, in- 
vestigations of matrix solution methods were conducted largely by trial 
and numerical experimentation. The comparatively simple methods that 
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were tried gave satisfactory computing times in most cases, but efforts to 
discover faster methods continue to be made. 

Both direct methods and iterative methods are used to solve the linear 
equations. The choice depends on the number N of elements used to approxi- 
mate the body surface. This approach was adopted because the number of 
arithmetic operations required for a direct solution of N linear equations is 
nearly proportional to N 3 (for N sufficiently large to give acceptable accuracy 
in most applications), and the number of operations for one iteration of 
an iterative solution is proportional to N 2. Thus if the number of iterations 
required for convergence to a satisfactory solution is independent of N, 
or at least increases more slowly than N itself, a "cross-over point" can be 
expected to exist. That is, for N below a certain value a direct method is 
more efficient, and for larger values of N an iterative solution is preferable. 
Experience verified that this is the ease for exterior flows. The "cross-over 
point" is really a range of values of N, since the number of iterations required 
to obtain a solution by any iterative method depends on the body shape 
and the onset flow. Because the required number of iterations is quite dif- 
ferent for different body shapes, this range of values of N is rather wide. 
The situation is complicated by the fact that the computing time is deter- 
mined more by the amount of information that must be transferred from 
the computer's large low-speed storage to its comparatively small high-speed 
storage than by the amount of arithmetical calculation that is performed. 
This has made direct solution attractive for higher order matrices than it 
had been expected to be. 

There is a range of values of N that is seldom used. It lies between the 
largest element number that is used for multiple two-dimensional and axi- 
symmetric bodies (approximately 300) and the smallest element number that 
is used for most three-dimensional configurations of practical interest 
(approximately 500). This seemed to be a natural division, and at present 
virtually all two-dimensional and axisymmetric cases use a direct method of 
solution, while all three-dimensional cases use an iterative solution. Recent 
evidence indicates that perhaps direct solution should be used even for some 
three-dimensional cases, but the matter needs further investigation. 

5.2 Some Properties of the Coefficient Matrix 
Certain properties of the coefficient matrix A~j determine the effectiveness 

of iterative methods of solution and to a lesser extent affect the choice of 
a direct method of solution. The general nature of this matrix is discussed in 
this section and is applied to the analysis of solution methods in subsequent 
sections, particularly in Section 5.4, where iterative solutions are discussed. 

Few general statements concerning the matrix AU can be made. For 
two-dimensional and three-dimensional cases where symmetry of the body 
surface is not employed, a few observations can be stated that are based 
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on numerical results and study of the integral equation (2.5), whose pro- 
perties are ~ipps.o~mated by corresponding properties of the coefficient 
matrix Att. In these cases the diagonal entries Aii are simply 2zr, the local 
contributionto the normal velocity. (When symmetry is utilized, particularly 
the symmetry associated with an axisymmetric body, contributions of other 
portions of the surface appear in the diagonal entries, and any analysis is 
complicated. All that can be said is that experience shows that the results 
for these cases are roughly similar to those for the  nonsymmetric cases.) 
As was discussed in Section 2, the nature of the kernel of the integral equation 
(2.5) is such that in the approximating matrix A~I the sum of all diagonal 
entries is approximately equal to the sum of all off-diagonal entries. For a 
single closed convex body surface the off-diagonal terms all have the same 
sign, and the previous statement holds for the sums of absolute magnitudes 
of the entries. However, for concave-convex bodies or for several disjoint 
bodies the off-diagonal terms vary in sign, and the sum of their absolute 
magnitudes is greater than the sum of the magnitudes of the diagonal entries. 

For the cases of  the previous paragraph, where symmetry of the body 
surface is not utilized, some information on the eigenvalues of Atl has been 
obtained by numerical experimentation. It is known<m that all eigenvalues of 
the integral equation (2.5) are real and lie in a certain range. Experiments 
indicate that this is also true for the matrix A~j whose eigenvalues are ap- 
parently exactly real and lie in the interval from 0 to 4~r. As stated in the 
discussion of Section 2, for a single closed body the integral equation is 
indeterminate for a case of interior flow in that there is a non-trivial solution 
of  the homogeneous equation. The integral equation would be indeterminative 
for exterior flow if the sign of the 2~rc, term outside the integral were reversed. 
If this behavior were carried over to the approximating matrix, there should 
be a zero eigenvalue for the case of interior flow and an eigenvalue equal 
to 4rr for the case of exterior flow. It turns out that this is only approxi- 
mately true. For interior flow the matrix A~j has a small positive eigenvalue 
whose magnitude decreases as the order N of Atj increases; that is, as the 
calculation is made more accurate. For exterior flow, Atj has an eigenvalue 
that is less than 4rr by a small amount that decreases with N. For the same 
body and the same order N the matrices A~j for exterior and interior flow 
differ only in the signs of the off-diagonal entries, and the amount that the 
exterior-flow eigenvalue is less than 4rr exactly equals the small interior-flow 
eigcnvalue. The other ( N -  1) eigenvalues of the matrix A~j do not neces- 
sarily correspond to any property of the integral equation, but may depend 
only on properties of the matrix. For example, for a circular cylinder the 
integral equation has one eigenvalue, although the matrix of course has N. 
For thick, smooth bodies the remaining (N -- I) eigenvalues are apparently 
clustered near 2~r. As the body is made thinner, they move toward the ends 
of the interval from 0 to 4rr. It seems that half of them move each way. In the 
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limit of a body of zero thickness, corresponding elements of the upper surface 
and lower surface are coincident (assuming they are distributed symmetrically). 
Clearly, source densities on a pair of coincident surface elements cannot be 
determined individually. The most that can be found is their sum. Thus for a 
body of zero thickness, the matrix A,j is singular to such a degree that zero is 
an eigenvalue of multiplicity N/2 .  These properties of the eigenvalues of A,~ 
are used in Section 5.4 to explain the behavior of iterative methods of solution. 

5.3 Direct  M e t h o d  o f  Solut ion 

At an early stage in the development of the present method, it was rather 
arbitrarily decided that in any direct method of solution of the linear equa- 
tions the coefficient matrix A~j would be transferred only once from the 
low-speed storage. Although this has the advantage of minimizing computing 
time for a case of the size that can actually be handled, it restricts use of 
the direct solutions to sets of equations whose order N is less than some 
maximum determined solely by the high-speed storage capacity of the 
computer. By chance this maximum happened to coincide with the natural 
division for N mentioned in Section 5.1. It now seems that it may be desirable 
to utilize procedures involving repetitive transfers of portions of the coefficient 
matrix in order to apply direct methods of solution to higher order systems. 
The present method has been programmed for IBM computing machines 
having 32,000 words of high-speed storage, of which approximately 20,000 
are available for the storage of numerical information. 

The most obvious way to effect a direct solution is to triangularize the 
coefficient matrix A~j by means of the standard Gauss reduction. Originally, 
this method was used. During the process the right sides of the equations 
(3.4.2) for as many as ten onset flows are carried along and operated on, 
which has the result that the total computing time is scarcely greater than 
the time for a single right side. The large diagonal entries of A~j make it 
possible to use the equations in order and not to have to search at the nth 
stage for the equation having the largest coefficient of o,,. This method 
requires the entire matrix Ai j  to be in high-speed storage at one time. Accord- 
ingly, the order N of A~j is restricted to values less than 140. 

To increase the order of the matrix to which the direct method of solution 
can be applied, a procedure of successive orthogonalization <z41 is used. 
Let the right sides of equations (3.4.2) be abbreviated c~, and consider 
the set of N vectors in (N + I)-dimensional space 

( A i l ,  A i  o . . . . .  Ai?,', --  ci) i ---- 1, 2 . . . . .  N (5.3.1) 

The solution oj of Eqs. (3.4.2) is such that the vector 

(or1, a~ . . . . .  ~r.v, 1) (5.3.2) 

is brthogonnl to nll the vectors of (5.3.1). Thus the solution of Eq. (3.4.2) 
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is 6quivalent to determining an (N + 0-dimensional vector orthogonal to the 
N vectors of  (5.3.1) and having unity as its (N + 1)-th component. 

First, N linearly independent vectors are determined that are ortho- 
gonal to (5.3.1) for i = 1. By linear combinations of  the vectors of this 
set, ( N -  1) linearly independent vectors are obtained that are also ortho- 
gonal to (5.3.1) for i = 2. This process is continued until finally one vector is 
obtained that is orthogonal to (5.3.1) for i = N and by construction is also 
orthogonal to (5.3.1) for i < N. This is the desired vector (5.3.2). After 
the nth stage of  this process has been completed, there are (N + 1 -- n) 
linearly independent vectors. For each of these vectors the first n components 
are nontrivial and generally nonzero. All other components are zero except 
one, which is unity. The first of  the (N + 1 -- n) vectors has a unit (n + I)-th 
component (immediately after the nontrivial components). The second has a 
unit (n + 2)-th component, etc. Finally, the last vector, the (N + 1 -- n)-th 
has a unit (N + l)-th component. These vectors are clearly linearly inde- 
pendent. To continue the process, that is, to find (N -- n) vectors orthogonal 
to (5.3.1) for i = n + 1, the first vector of  the set is linearly combined with 
each of the other ( N -  n) vectors successively. The combination constant 
that  multiplies each of  the (N - n) vectors is taken as unity, and the constant 
that multiplies the first vector is adjusted to make the combined vector 
orthogonal to (5.3.1) for i = n + I. 

Each row of  the coefficient matrix A,~ is used at only one stage of  the 
process and is not needed before or after that stage. Thus A,j is transferred 
from low- to high-speed storage a row at a time, with each row destroying 
the previous one, and no significant amount  of  storage is required for this 
purpose. However, the components of all orthogonal vectors must always 
be in high-speed storage, since they are used repetitively. After the nth 
stage there are (N + 1 -- n) vectors, each having n nontrivial components. 
The maximum total number of components occurs when the process is about 
half finished; that is, when n is approximately 3//2, at which point the total 
number of components is approximately N2/4. Thus the order of the matrix to 
which this method can be applied is about twice that for the triangularization 
process. At present it is used for matrices having N as large as 275. 

The orthogonalization process makes important use of  the fact that A~s 
has large diagonal entries. At any stage the vector with a unit (n + 1)-th 
component is used as the base vector for forming the set orthogonal to 
(5.3.1) for i = n + 1. This eliminates nontrivial numerical problems that can 
arise for general matrices. If  the vectors could not be used in order, but a 
suitable base vector had to be selected at each stage, either the required 
storage would greatly increase or the computational logic would become 
considerably more complicated, with a corresponding increase in computing 
time. 

At any stage of  the orthogonalization process, only the last vector of 
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the set has a nonzero (N q- 1)-th component. Because of the way the sets of 
vectors are formed, this means that only the last vector depends on the right 
side c~ of the linear equations. If solutions for several right sides are desired, 
several "last" vectors are carried along in the process. 

In fluid-dynamics problems only a few onset flows are normally of interest. 
Thus, although there may be more than one right side for the linear equations, 
there is never a really large number of them. Accordingly, it is not generally 
worth while to calculate the inverse of the coefficient matrix A~j, since this 
requires considerably more computing time than either of the above pro- 
cesses. The only exception to this occurs in certain unsteady flows where 
solutions are required at many different times. 

5.4 lteratit,e Method of Solution 

If the order of the coefficient matrix A~j becomes sufficiently large, it 
seems reasonable to abandon direct methods of solution and to use an itera- 
rive method. In the usual application the number N 2 of entries in A~j greatly 
exceeds the high-speed storage capacity of the computer. The matrix is 
contained in low-speed storage, and during each iteration it is brought 
into high-speed storage a little at a time and used to improve the approxi- 
mation of the solution that was obtained in the previous iteration. 

Much work on iterative solution of linear equations has been done in 
recent years. Varga ¢~ presents a treatise on this subject, and Forsythe and 
Wasow¢2e~ give a lengthy discussion. The principal effort has been devoted to 
the sparse matrices that arise from finite-difference approximations. The 
majority of the methods thus developed are either inapplicable to a full matrix 
such as Atj or inefficient for such an application. A few of the advanced 
methods discussed by Varga are applicable, and it is hoped that their appli- 
cation to the present problem can be studied in the future. However, because 
of the special nature of A~j, straightforward iterative methods converge 
rather rapidly, and significant improvements in this area may be difficult to 
obtain. 

The method employed for iterative solution of the linear equations (3.4.2) 
is based on "solving" these equations for the unknowns on the diagonal 
in the form 

N 

a t =  ~ ,  c~-- A~ja I , i = 1 , 2  . . . .  N (5.4.1) 
j = l  

where again the right side of (3.4.2) has been abbreviated by c~. Let the 
ruth approximation of the solution cr~ be denoted o ~ .  An obvious way to 
use (5.4.1) is to substitute the values o~') on the right side to obtain the 
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(m ÷ 'l)-th approximation g(~+x), namely, 
N 

-- As'-] c~ -- A~y o(~ ) . i = 1, 2 . . . . .  N (5.4.2) 

The iterative method described by (5.4.2), which is called the point Jacobi 
method,(25) obtains the new approximation entirely from the values of  the old 
approximation. Now the values of  crlm+~) are calculated in the order 
i = 1, 2 . . . .  , N. It seems natural, therefore, to use these improved values 
in the iteration scheme as soon as they are computed, rather than to continue 
to use values from the previous iteration. If  this is done, the iterative pro- 
cedure is 

I - - I  N 

= A'i - 

j = i  j f f i i ÷ l  

The iterative method described by (5.4.3) is commonly known as the Crauss- 
Seidel method. It always converges faster than the method of  (5.4.2), and, 
since it is also easier to use, it is employed in all applications. The point 
Jacobi method of (5.4.2) is considerably easier to analyze theoretically, and it 
is useful for investigating properties of  the matrix A(y. In the present appli- 
cation the initial approximation ~o ) i s  taken as zero for both iterative 
methods. 

A few general results that hold for any iteration method will now be 
quoted. The.error vector for the ruth iteration has the components 

E~ m) ---- o~ m~ -- ~ ,  i = 1, 2 . . . . .  N (5.4.4) 

where ~,~ is the true solution. The error of  the ruth iteration may be defined 
as the length of  this vector, namely,  

N 
E (m) ----- [~  (alto) -- ~t)2] l . (5.4.5) 

l m l  

It is known(25.26) that in the limit of  large numbers of iterations the ratio 
of  successive errors approaches a constant; that is, 

E(ra +1) 
E(,n----- i- --> A as m ~ oo. (5.4.6) 

For a convergent process A < 1, and (5.4.6) expresses the fact that eventually 
the error is reduced by a factor of  A per iteration. The quantity A is accordingly 
designated the asymptotic convergence factor of  the iteration process. 
The asymptotic number of  iterations required to reduce the error by a 
factor of ten,  that is, to improve the accuracy by one decimal place, is given by 

1 
Iterations per decimal place = logxo A " (5.4.7) 
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Any iteration process may be written 

N 
ol m+ll = Z Q~J o~ m) + D~. (5.4.8) 

./ffil 

The matrix Q~j may be called the iteration matrix of the process.( 25, ~.e) It 
is defined as the matrix which, when multiplied by the ruth approximation o~"), 
gives the (m + 1)-th approximation o(r'+l) (with the addition of the term D~, 
which is independent of m). The asymptotic convergence factor is known (zS) 
to be equal to the maximum absolute magnitude of the eigenvalues of Q~j. 
If  the eigenvalue of maximum absolute magnitude is unique, say AM, succes- 
sive error vectors (not just their lengths as in (5.4.6)) eventually satisfy 

Elm+~ 
E~m~ ~A~t as m ~  oo. (5.4.9) 

For this case the error vectors are asymptotically parallel, and each com- 
ponent is reduced by a factor of AM per iteration. The factor AM may be either 
positive or negative, but not complex, or there would be two eigenvalues 
having the maximum magnitude. There is one exceptional case. When the 
initial vector E~ °l is orthogonal to the characteristic vector associated with the 
eigenvalue of maximum magnitude, this eigenvalue does not affect the 
iteration process. In this case (5.4.9) holds, with AM now denoting the eigen- 
value of second largest magnitude, if this is unique. In general, of course, 
errors cannot be estimated, but for the special case o f  (5.4.9) the asymptotic 
convergence factor can be estimated from the relation 

a!,, ,-t 11 __ ~Im> 

o!m) __ o,(m_l) ---> / ~ I  a s  m - +  w_,,, (5.4.10) 

as can be easily shown. That is, the ratio of the changes in o~ for two successive 
iterations approaches the unique eigenvalue of maximum magnitude. Any 
value of i could be used in (5.4.10), that is, any compofient of oi. Practically, 
it is most accurate to select the component whose change per iteration is 
the largest. 

For the present method the theory of the previous paragraph has been 
used as a guide for numerical experimentation and as a means of interpreting 
the results. For the point Jacobi iterative solution, (5.4.2), the iteration 
matrix is simply related to the coefficient matrix A,j, but for the Gauss- 
Seidel process, (5.4.3), this is not so. Apparently, both iteration matrices 
have all eigenvalues real in the range --1 to q-l, and thus both are always 
convergent. Some discussion of the two processes is given below. 

The iteration matrix Qtj for the point Jacobi iterative procedure is obtained 
from the' coefficient matrix A~j by (1) dividing the entries of each row by the 
diagonal entry, (2) setting the diagonal entries equal to zero, and (3) reversing 
the signs of all terms. For two-dimensional and three-dimensional bodies 
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without symmetry, all diagonal entries of A~ equal 2rr, and the eigenvalues 
/3 of Q~j are related to the eigenvalues ~ of A~j by 

13 = 1 -- ~-- (5.4.11) 21r 

From the discussion of the eigenvalues of Atj contained in Section 5.2, it 
is clear that for interior flows for which A~j is nearly singular there is a 
/3 near -b I and that for exterior flows when A~j can be made nearly singular 
by reversing the sign of the diagonal entries there is a/3 near --1. For all 
bodies of practical interest, the/3 arising from this condition is the largest 
in magnitude and is called the critical value of/3. Also from Section 5.2, 
it follows that this value of 13 is a function of N that approaches q-1 or 
- -  1 as N increases. For sufficiently simple bodies the largest/3 is sufficiently 
larger than any of the others for the asymptotic convergence factor to be 
approached after a fairly small number of iterations and can be estimated from 
(5.4.10). Thus, normally, the iteration process converges slowly and converges 
more slowly as the element number N is increased. Since the critical value 
of/3 depends only on N, the rate of convergence is independent of the body 
shape and is also independent of the onset flow, which does not affect the 
matrix A~j. Moreover, there is evidently no difference in the magnitude of 
the asymptotic convergence factors for an exterior flow and for an interior 
flow about the same body. (In the former the error alternates in sign, and 
in the latter it does not.) In the limit of zero-thickness bodies, approximately 
half the eigenvalues of the iterative matrix approach q-1 (see Section 5.2), 
but these do not become larger in absolute value than the critical value 
of 13 for the thicknesses occurring in applications. The exceptional case 
described above occurs when there is a uniform onset flow to a body (and 
element distribution) having fore and aft symmetry in the free-stream direc- 
tion. In this case the characteristic vector corresponding to the eigenva!ue 
/3 = 1 also has fore and aft symmetry; that is, the components corresponding 
to symmetrically placed elements are equal. The solution is antisymmetric, 
in that there are sources on the front of the body and sinks on the back. For 
this iterative procedure the initial error vector E~ °~ is just the negative of the 
solution, and it is also antisymmetric. The second largest eigenvalue thus 
becomes dominant. This eigenvalue is much smaller if the body is not very 
thin; and it usually does not vary significantly with N, but does depend on 
the body shape. Thus the convergence of the iterative procedure does not 
change with element number, but varies from body to body for this excep- 
tional case. Clearly, any onset flow that has the proper symmetry is also 
exceptional. 

The considerations of the previous paragraph may be illustrated by 
examples. Consider the two two-dimensional bodies shown in Fig. 18. The 
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first is a 20 per cent- thick ellipse, and  the other  is a 20 per cent-thick semi- 
ellipse jo ined  to a semicircle. For  each body  two flows were computed .  The 
first is tha t  due to a un i form onset  flow parallel to  the x-axis, and  the second 
is that  due to a unit outf low velocity over the boundary .  The symmetries o f  

OUTFLOW OUTFLOW 

FLow t 

ELLIPSE ELLIPSE-CIRCLE 

FIG. 18. Profile curves of two two-dimensional bodies. 

the bodies were not  utilized. Two-dimensional  examples were selected even 
though  in applications such cases are solved by a direct method,  because o f  
the large a m o u n t  o f  comput ing  time required to calculate a systematic series 
o f  three-dimensional  cases. Asympto t i c  convergence factors  and  numbers  o f  
i terations required to obtain one decimal place improvement  in accuracy  are 
shown,  in Table 1, as funct ions o f  the element number  N. The number  o f  

TABLE 1 
ASYMPTOTIC CONVERGENCE FACTORS AND NUMBERS OF ITERATIONS PER DECIMAL PLACE OF 

ACCURACY FOR THE POINT JACOBI ITERATIVE METHOD 

Ellipse 

Uniform onset flow Unit outflow 

N Convergence , Iterations per Convergence Iterations per 
factor decimal place factor decimal place 

28 --0.60 4 
56 --0.63 5 

112 --0.65 5 
224 --0.65 5 

-0.959 
-0.978 
-0.988 
--0.994 

Ellipse-Circle 

N Convergence Iterations per Convergence i Iterations per 
factor decimal place factor decimal place 

55 
104 
191 
383 

28 --0.956 51 
56 --0.977 99 

!12 --0.988 191 
224 --0.994 383 

--0.956 51 
--0.977 99 
--0.988 191 
--0.994 383 
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elements was simply doubled each time, so that the element distribution 
remained similar. 
The asymptotic convergence factor for the ellipse-circle is essentially the 
same for both flows, and it increases with N. In this case the convergence 
factor differs from --1 by an amount proportional to l/N; therefore the 
number of iterations per decimal place of accuracy is proportional to N. 
For the ellipse with unit outflow the convergence factor is identical to that 
for the ellipse-circle at equal values of N. The exceptional nature of the 
ellipse in a uniform onset flow is evident. The asymptotic convergence factor 
is much smaller, and it varies slowly with N. For the same element number, 
convergence rates for three-dimensional bodies are much more favorable 
than those shown above, essentially because the eigenvalue of the integral 
equation is not approximated as well. 

A comparison of (5.4.3) and (5.4.8) shows that the iteration matrix for 
the Gauss-Seidel procedure is not simply related to the coefficient matrix A~j. 
The behavior of this iterative procedure cannot be related to the properties of 
A~j to the same extent that it could be for the point Jacobi method. Informa- 
tion on this method has come principally from numerical experimentation. 
The most important fact is that the Gauss-Seidel method is faster than the 
point Jaeobi, much faster for exterior flows and at least a little faster for 
interior flows. The point Jacobi method responds unfavorably to the fact that 
the coefficient matrix can be made nearly singular by reversing the signs of 
the diagonal entries, but the Gauss-Seidel method is not affected by this con- 
dition. However, it is affected by a condition of near singularity of the 
matrix. For exterior flows the asymptotic convergence factor depends on the 
shape of the body and in particular on its thickness, becoming larger as the 
body becomes thinner (and thus the matrix becomes more nearly singular), 
but convergence is virtually independent of element number N for a given 
body. For interior flows the convergence factor increases with element 
number, because the coefficient matrix becomes more nearly singular. The 
dominant eigenvalue of the iteration matrix is always positive, and approach 
to the asymptotic condition (5.4.10) is very rapid for simple bodies. Appa- 
rently, there is no exceptional case that arises in applications. 

The above observations will be illustrated by showing results for the 
same two bodies and flows that were discussed above for the point Jacobi 
method. Also shown are the results for an interior flow in the 20 per cent- 
thick ellipse. The normal-derivative boundary conditions for this latter 
case were those corresponding to a uniform onset flow in the x-direction. 
The asymptotic convergence factors and numbers of iterations required to 
obtain one decimal-place improvement in accuracy are shown in Table 2. 

The four exterior flows show that the asymptotic convergence factor is 
independent of the element number and the flow, but does depend on the 
body shape, being larger for the 20 per cent-thick ellipse than for the 33 
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TABLE 2 

ASYMPTOTIC CONVERGENCE FACTORS AND NUMBERS OF ITERATIONS PER DECIMAL PLACE OF 
ACCURACY FOR THE GAUSS-SEIDEL ITERATIVE METHOD 

Ellipse 

Uniform onset flow Unit outflow 

N Convergence Iterations per Convergence Iterations per 
factor decimal place factor decimal place 

28 0.45 3 0.45 3 
56 0.45 3 0.44 3 

l 12 0.43 3 0.43 3 
224 0.43 3 0.42 3 

Interior Flow 

N 

28 
56 

112 
224 

I 

Convergence 
factor 

Iterations per 
decimal place 

0.915 
0.956 
0.977 
0.988 

23 
51 
99 

191 

Ellipse-Circle 

Uniform onset flow Unit outflow 

N Convergence Iterations per Convergence Iterations per 
factor decimal place factor decimal place 

28 
56 

112 
224 

0.27 
0.27 
0.29 
0.29 

0.28 
0.26 
0,25 
0.25 

per  cent - th ick  ell ipse-circle.  The  in ter ior - f low case exhibi ts  large convergence  
fac tors  tha t  increase with N. (It  is in teres t ing  to note tha t  for the in ter ior  
flow the G a u s s - S e i d e l  convergence  fac tors  are the squares  o f  t h o s e  for  the 
poin t  Jacobi  me thod  with the same e lement  number .  As der ived  by Varga,  t251 
this is a general  p rope r ty  o f  a cer ta in  class o f  matr ices ,  but  a class to which 
the i te ra t ion  matr ices  o f  the present  m e t h o d  a p p a r e n t l y  do  not  belong.  
Whe the r  or  not  this  cond i t ion  occurs  for  all body  ~hapes hits not  been deter-  
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mined.) For cases of two-dimensional exterior flows that would arise in 
applications (if this method were used instead of the direct method), con- 
vergence is somewhat slower than in the cases listed below. A 6 per cent-thick 
double-wedge body, which is an unusually unfavorable shape, had an 
asymptotic convergence factor of 0.81, which means I1 iterations for each 
decimal place of accuracy. Convergence can be much slower for flow about 
several two-dimensional bodies in close proximity than it is for flow about a 
single two-dimensional body. In three-dimensional cases, for which this 
procedure is actually used, convergence is more rapid than it is in two- 
dimensional cases. Asymptotic convergence factors for exterior flows rarely 
exceed 0.6 (4 iterations per decimal place of accuracy); a typical value for an 
interior flow is 0.8 (11 iterations per decimal place of accuracy). 

In the present application the asymptotic convergence factor is by far 
the most important parameter in determining the number of iterations re- 
quired for satisfactory accuracy. Tables 1 and 2 thus provide a very useful 
measure of the efficiency of the iteration methods. Other considerations, 
however, do have some effect. One is the rapidity with which the asymptotic 
convergence factor is approached. For simple bodies the rate of approach 
is quite rapid. Perhaps a half dozen iterations suffice to establish the asymp- 
totic convergence factor with an error of a few per cent. For certain cases of 
multiple bodies the approach may be much slower, and whether the initial 
reduction in error is larger or smaller than the asymptotic reduction may be 
significant. A more important consideration is the magnitude of the error 
after the first iteration. For smooth bodies this error is often quite small and 
the number of iterations required for convergence is correspondingly smaller 
than might be expected. Near a corner, on the other hand, the values of 
source density are often large, and the iterative procedure requires a consider- 
able number of  iterations to attain the proper value. 

On the whole, Gauss-Seidel is a fairly satisfactory method for three- 
dimensional exterior flows. Efforts to find faster methods continue, and 
certain methods~2~ remain to be studied. One a~tempt to accelerate con- 
vergence was based on the above-mentioned fact that the asymptotic con- 
vergence factor is often approached very closely after a comparatively small 
number of iterations. After this point the change in the values of source 
density for any iteration is nearly a constant multiple of the change for the 
previous iteration [see (5.4.10)]. It seemed possible to obtain a large increase 
in accuracy by analytically summing the indicated geometric series. This 
works very well for smooth bodies. Unfortunately, the common three- 
dimensional case in applications consists of several bodies, usually inter° 
seeting, such as wing-pylon-nacelle combinations. For such configurations 
each component body has what amounts to an individual convergence 
factor, and quite a considerable number of iterations are required before a 
common convergence factor is attained. 
G 
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6. O T H E R  E X A C T  N U M E R I C A L  M E T H O D S  O F  S O L U T I O N  

Exact numerical methods for the solution of the direct problem of potential 
flow are characterized by the fact that, at least in principle, any degree of 
accuracy may be obtained by sufficiently refining the calculational procedure 
without changing the analytical formulation. For example, the present 
method will yield an increasingly accurate solution as the number of elements 
used to approximate the body surface is increased. This reduction in error 
does not require changing the procedures of the method and, in particular, 
does not require new programming. In contrast, a perturbation technique 
normally uses an expansion that is terminated at a particular order, which 
may be calculated accurately. But to increase the order of the approximation 
requires additional analysis and programming. (Also, many expansion 
techniques in fluid dynamics are asymptotic and cannot reduce errors below 
a certain level.) Furthermore, to be exact in a useful sense, a method must be 
applicable to a general class of boundary surfaces. An axial source distribution 
can give exact results for a prolate spheroid in axisymmetric flow, but is 
approximate for general bodies and is thus not exact in this sense. Exact 
numerical methods capable of attaining high accuracy must invariably make 
use of high-speed computing machines. 

Many of the classical theoretical approaches to the solution of Laplace's 
equation are unsuitable for use in the fluid-dynamics problem. For example, 
determining Green's function for a boundary shape is more time consuming 
than simply calculating a solution. This approach would be useful for 
problems in which solutions for a large number of boundary conditions on a 
particular body surface were of interest, but such problems are rare in fluid 
dynamics. (The present method can essentially find Green's function numeri- 
cally by calculating the inverse of the coefficient matrix A~j.) 

There appear to be two classes of exact numerical solutions that have 
been applied to the general fluid-dynamics problem: network methods based 
on finite-difference approximations of the derivatives of the potential and 
methods based on solution of an integral equation over the boundary surface. 
The latter class of methods usually involves determination of a singularity 
distribution over the boundary surface. For two-dimensional flows there are 
also methods based on conformal transformation. 

6.1 Network Methods 

Network methods are perhaps the most straightforward way of attacking a 
partial differential equation. Of the several essentially equivalent ways of 
deriving the governing equations, thhg~nost straightforward is to approximate 
the differential operator, in this case the Laplacian, by differences of the 
values of the potential at various control points. This approximation becomes 
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more nearly exact as the spacing between the control points is decreased. 
However the derivation is accomplished, the result is a set of linear algebraic 
equations relating the values of the potential at the control points, which 
are distributed throughout the field of flow, usually on a rectangular grid. 
Each equation relates the value of the potential at a control point to the 
values at neighboring control points, and the form of all the equations is 
identical, except at points near the boundary. The finite-difference approach 
has several general advantages, one of which is the fact that it is applicable 
to any partial differential equation. However, if attention is restricted to 
Laplace's equation, it has only two advantages: the coefficient matrix of the 
linear equations that must be solved, although of very high order, is sparse, 
and extensive calculations are not required to obtain this matrix. For some 
applications of Laplace's equation network methods are feasible, but certain 
special features of the fluid.dynamics problem make the present method 
clearly superior for that application. 

It is characteristic of the fluid-dynamics problem that in most cases the 
solution is of interest only, on the boundary. The natural advantage of 
the present method is that it reduces the dimensionality of the problem by 
one, and its control points are distributed only over the boundary. The con- 
trol points of a network method must be distributed throughout the flow 
field; that is, the solution must be obtained for the whole field even if it is 
required only on the boundary. Moreover, the mo~t common application 
is that of the exterior flow about a closed body, where the flow field is infinite 
in extent but the boundary is finite. The situation is illustrated in Fig. 19, 

t . 4, 

SURFACE SOURCE O ISTR)SUT ION NETWORK 

FIG. 19. Control points for network and surface source distribution methods. 

which shows control points of comparable spacing for the two methods. For 
example, suppose that 30 control points are used along the length of the body 
and that the network is carried a few body lengths in each direction, to where 
the disturbance field of the body may be taken as zero. If increased spacing 
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is used at some distance from the body, perhaps roughly 100 control points in 
each coordinate direction are required. (Actually, this would be insufficient 
in the direction parallel to the long dimension of the body, since it would 
allow only 35 control points in each direction from the ends of the body.) 
The total number of control points for the network method is thus 104 for a 
two-dimensional ease and 106 for a three-dimensional case, For comparable 
spacing, the present method requires 60 control points for a two-dimensional 
ease, 30 on the top and 30 on the bottom, and 900 for a three-dimensional 
case, 30 around the cross section at each of 30 stations along the length. (It is 
assumed that symmetry, if any, is not utilized by either method.) Thus the 
number of unknowns in the network method is greater than the square of the 
number of unknowns in the present method and thus greater than the total 
number of entries in the coefficient matrix of the present method. If the 
accuracies of the two calculations are increased by decreasing the spacing, 
the ratio of the number of unknowns in the network method to the number 
in the present method is increased. 

In the fluid-dynamics problem, the accuracy required in applications 
is considerably greater than that required in other physical problems. As any 
experienced fluid dynamicist knows, two bodies of quite similar shape may 
have very different surface pressure distributions, so that one may be a good 
aerodynamic shape and the other may not (see examples of Section 9). This 
accuracy requirement increases the efficiency of the present method relative 
to a network method. The computational labor of a network method in- 
creases, more rapidly with the degree of accuracy attained than the computa- 
tional labor of the present method does. This is due both to the more rapid 
increase o]" the number of control points and to the difficulty of solving the 
resulting matrix equation. For the large matrices that must be solved, itera- 
tire solution methods must be used. As was stated in Section 5.4, if the Gauss- 
Seidel iterative method is used with the coefficient matrix of the present 
method, the number of iterations required for convergence is essentially 
independent of the number of control points. However, for network methods 
the number of iterations required for convergence apparently always in- 
creases with the number of control points. Varga ~25) and Forsythe and 
Wasow~ eB) discuss solution by network methods of the interior Dirichlet 
problem for the square (potential specified on the boundary). For both the 
point Jacobi and Gauss-Seidel methods, the asymptotic number of iterations 
required to obtain a one-decimal-place improvement in accuracy is pro- 
portional to the total number of control points in the field. For the more 
sophisticated successive-over-relaxation technique, the corresponding num- 
ber of iterations is proportional to the number of boundary points. Other 
advanced methods are faster for the square, but it appears from the dis- 
cussion presented by Varga that for general boundaries these latter methods 
are not faster except for very small point spacings. 
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The example outlined abo~,e may be used to provide a comparison of 
computing times. Using a very approximate analysis, Forsythe and Wasow 
estimate the computing times required for solutions by network methods 
as one ho)tr for the two-dimensional case and one week for the three-dimen- 
sional case. These estimates are based on a computer able to perform a 
typical arithmetic operation in 50 ~sec. If it is assumed that computers 
currently in use are five times faster overall, these times become 12 min for 
the two-dimensional case and 34 hr for the three-dimensional case. The 
present method solves the example with computing times that are less than 
these by a factor of approximately twenty. 

The accuracy obtainable with network methods is reduced by the fact 
that these methods calculate the potential, rather than the gradient of the 
potential, the velocity, which is the quantity of physical significance in 
the fluid-d~,namics problem. Since a rectangular grid of control points is 
highly desirable, the application of a condition on the normal derivative of  
the potential along a curved boundary is troublesome. Forsythe and 
Wasow(~e) state: "Boundary conditions of Dirichlet type offer comparatively 
little difficulty in making the transition to difference equations, even when the 
boundary c is a curved one. The situation is much more complicated 
for boundary conditions involving the normal derivative, and it is far from 
clear how best to deal with curved boundaries." Varga's(zS) developments 
apparently alleviate this problem. However, the quantity of final interest 
is the tangential derivative of the potential along the boundary. It seems that 
in network methods this derivative must essentially be evaluated numerically, 
with a consequent loss of accuracy. The present method, on the other hand, 
calculates velocity directly. 

6.2 Integral-Equation Methods 

Exact integral-equation representations of the direct problem of potential 
flow may be formulated in a variety of ways, all leading to a Fredholm 
integral equation of either the first or the second kind. Most of the methods 
that have been formulated are equivalent to determining a distribution of 
singularity over the body surface. Both source and vortex distributions have 
been used. Methods have been formulated for two-dimensional bodies and 
for axisymmetric bodies. The present method is apparently the only one that 
has been formulated forthree-dimensional bodies. 

The idea of using a surface source distribution, which is determined as 
the solution of a Fredholm integral equation of the second kind for the 
exterior normal velocity on the body surface, was first stated by Lotz ¢1s) for 
the case of an axisymmetrie body in cross flow. This method was developed 
and extended by Vandrey,( 27, za) who formulates(2a) a complete set of integral 
equations for axisymmetric bodies, including the case of  cross flow and that 
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of rotation. Vandrey's formulation is precisely that of  the present method, 
and the resulting integral equations are identical. The integral equations are 
solved by an iteration method that uses the trapezoidal rule to evaluate the 
integrals (after certain transformations). Boundary conditions are applied 
and velocities are calculated at a set of control points distributed along the 
profile curve of the body. Vandrey's intention was to develop a method of  
hand calculation, and considerable analysis is devoted to putting the pro- 
eedure in a form suitable for human computers using desk calculators. The 
labor involved in calculating a single flow is clearly quite large, even for a 
fairly small number of control points. Accordingly, the number of control 
points is limited to about two dozen. Apparently the method has not been 
programmed for an electronic computer.* 

For two-dimensional flows, a general computer method based on a surface 
vorticity distribution has been developed. The problem was originally formu- 
lated by Praeger.C29~ ~The method was developed, extended, and adapated for 
computer by Martensen~ 30~ and Jacob. Isx~ It works with the stream function, 
rather than the velocity potential, and expresses the perturbation stream 
function due to the body as an integral over the profile curve of the body. 
The integrand is the product of the stream function due to a unit line vortex 
located at a point on the profile curve and the local value of  vorticity. The 
stream function at the point x, y due to a line vortex at ~:, -q may be written 

¢ =  1 In [(~-----,~-+ (y- -- ~-)2]. (6.2.1) 

If  the vortex strength along the profile curve is denoted by r, the perturbation 
stream function is 

1 o 1 ~b(.x', y) = 4r: ~ r ln [(.~- ,)_ + ( y ~_ ~)2] ds, (6.2.2) 

where the integration is performed over the entire profile. Expression (6.2.2) 
could be set equal to the negative of the stream function of  the onset flow 
along the body profile. This would lead to an integral equation of the first 
kind for the vorticity strength ~,. Instead, a different condition is applied. 
As was pointed out in the references, the surface vorticity distribution that 
makes a closed body a streamline for the exterior flow also makes the in- 
terior of the closed body a region of zero velocity. The condition applied 
is that the total tangential velocity--perturbation plus onset flow--be zero 
on the inside of the profile curve of the body. The perturbation tangential 

Addition in proof: An alternate approach formulated by Vandrey is based on a surface 
vorticity distribution. This has been programmed for the case of axisymmetric flow and 
apparently gives satisfactory accuracy on smooth bodies using small numbers of control 
points. It is described by D. Kershaw, A Numerical Solution of an Integral Equation 
Satisfied by the Velocity Distribution around a Body of Revolution in Axial Flow, 
Aeronautical Research Council R. and M. No. 3308 (1963). 
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velocity is obtained as the normal derivative of (6.2.2). Evaluating this 
derivative on the body surface involves exactly the limiting process described 
in Section 2 and has the same result, namely, a term outside the integral as 
well as the integral itself. Thus an integral equation of the second kind is 
obtained for the vonicity strength v. It can be shown that v is exactly the 
surface velocity for the exterior flow, that is, this important quantity is 
obtained directly. 

It is interesting to note that the integral equation obtained by the above 
procedure is virtually identical to that of the present method. A comparison 
of (6.2.1) with (4.1.3) shows that the stream function due to a line vortex 
is identical to the potential due to a line source. (With the definitions used 
here, they differ by a nonessential factor of 4~.) Thus a vortex may be thought 
of as a "source" of the stream function in two dimensions. Similarly the 
perturbation stream function (6.2.2) is identical to the two-dimensional form 
of (2.3) for the perturbation potential. As was described above, the integral 
equation for v is obtained by evaluating the normal derivative of (6.2.2) on 
the body surface. The integral equation in the present method is obtained in 
exactly this way from (2.3). The only difference is in. the direction of the 
normal derivative--exterior in the present method, interior in the Martensen~- 
Jacob method. Thus the left side of the integral equation obtained by the 
Martensen-Jacob method for the exterior flow about a closed body is 
identical to that of the two-dimensional form of the equation (2.5) obtained 
by the present method for interior flow within the same body. The right 
sides of the integral equations differ in that one is the normal component of 
the onset flow and one the tangential component. 

The Martensen-Jacob procedure approximates the integral equation by a 
set of linear algebraic equations. After certain transformations the integral 
is evaluated by the trapezoidal rule, which uses values of the integrand at 
the control points where the integral equation is required to hold. This is 
calculationaily equivalent to approximating the portion of the body profile 
in the neighborhood of a control point by a line vortex at the control point 

and calculating influence matrices V~j and Ao from the line-vortex formulas, 
which can be done considerably faster than evaluating the more complicated 
formulas of Section 4.1 for a line-segment element. But it is less accurate 
and therefore requires special care near the trailing edge of an airfoil*. The 
integral equation is indeterminative, and its solution is therefore non-unique 
(see discussion of Section 2). When solving the approximating set of linear 
algebraic equations an auxiliary condition is employed that fixes the total 
vorticity on the body profile. Solution of the linear equations gives values 

* Addition in proof: An extension of this method leading to an improved treatment or- 
the trailing-edge region has recently been described by P. Pal, Untersuehungen fiber den 
Interfereuzeinfluss bei Str6mungen dutch Tandem-Schaufelgitter. Ing. Arch. 34, 173 (1965). 
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of surface velocity directly, and the calculations of Section 3.5 are avoided. 
(For the present method this part of the calculation requires about I0 per 
cent of the total computation time.) As the method is presently formulated, 
flow at points off the body surface cannot be calculated, but this capability 
could certainly be incorporated. In summary, the method of Martensen and 
Jacob appears to be roughly equivalent to the present method for the calcu- 
lation of exterior flow about closed two-dimensional bodies. 

Another approach was adopted by Landweber.(32, az) His method is 
applicable to two-dimensional bodies symmetric about a line and to axi- 
symmetric bodies for axisymmetric flow, cross flow, or rotation. Annular 
bodies, such as tori or inlets are beyond the scope of this method, as are 
interior flows. This method uses Green's theorem to relate the perturbation 
potential of the body to another auxiliary potential function by means of the 
integral relation 

Unn dS (6.2.3) 
S S 

where ~0 is the perturbation potential, q~' is the auxiliary potential, 8/On 
denotes the normal derivative, and the integrals are taken over the body 
surface. For the various kinds of flows, the auxiliary potential qg' is identified 
with the potentials of various doublet distributions along the axis of sym- 
metry or line of  symmetry in two dimensions. Certain manipulations of 
(6.2.3) then lead in each case to an integral equation of the first kind for 
the tangential velocity along the surface (except for rotational motion, 
where the unknown function in the integral equation is the perturbation 
potential). The kernels of the integral equations are very simple functions. 
The integral is evaluated by Gaussian quadrature, and the integral equation is 
approximated by a set of linear algebraic equations. Since the integral 
equation is of the first kind, the approximating coefficient matrix does not in 
general have a dominant main diagonal, although the diagonal is relatively 
large if the interval between control points is of the order of the half-thickness 
of the body. Since this method was intended for a small computer, the num- 
ber of control points was usually less than twenty, and this relation between 
control-point interval and thickness existed for bodies of practical interest. 
If a large computer were used, this condition would not be important, 
because the equations could be solved directly rather than iteratively, as was 
done by Landweber. The nature of the method can be illustrated by exami- 
ning the axisymmetric case. Let ~: and -q denote the coordinates of a point 
on the profile curve of the body (7 is essentially a radial coordinate), and let s 
denote arc length along the profile curve. The integral equation for the 
tangential velocity v along the surface is 

l 

½ t' [(x -- ~1'-; + ~-]"-,- ds = -- V~ (6.2.4) 
0 
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where V~o is the velocity of the uniform onset flow, and the integration is 
performed over the entire arc length L of the profile curve. Equation (6.2.4) 
must hold for all values of x inside the body, where x is the axial coordinate 
of a general point on the axis of symmetry. It is easy to verify the fact that 
the kernel of Eq. (6.2.4) is the axial velocity at a point x, 0 on the axis of 
symmetry due to a ring vortex of unit strength lying in the body surface and 
passing through the point ~, -q. Solution of Eq. (6.2.4) is equivalent to deter- 
mining the distribution v of ring vorticity on the body surface that exactly 
cancels the onset flow on the axis and thus gives zero total velocity. The 
similarity to the previously mentioned method is evident. A surface vorticity 
distribution, which is identically equal to the tangential velocity, is deter- 
mined in such a way as to give zero velocity inside the body. In the previous 
method the boundary condition is applied on the surface; in this method a 
condition is applied some distance away from the surface on the axis of 
symmetry. This approach gives good results for smooth bodies. But it is 
evident that, even if a large number of control points are used, the surface 
vor~icity can respond only with difficulty to details of the shape of the profile 
curve whose characteristic dimensions are small compared with their distance 
from the axis of symmetry. Landweber (~s) concludes: "Experience with a 
large number of  bodies of revolution indicates that, for well-rounded bodies 
suttieiently accurate solutions can be obtained without difficulty by [Land- 
weber's method]. For bodies with sudden changes in slope and curvature, or 
with local bumps, the method of  [the present article] has been remarkably 
successful." 

A method that uses a distribution of ring vorticity on the surface of 
an axisymmetric body and that determines this distribution by applying a 
boundary condition on the surface of the body is presented by Chaplin. (34) 
The formulation is restricted to axisymmetric flows. The boundary condition 
requires that the value of the Stokes's stream function be constant on the 
body surface. This leads to an integral equation of the first kind for the 
surface vorticity. As in the present method, the body profile is approximated 
by a polygon. The surface vorticity is assumed to vary linearly over each 
line-segment element in such a way that it is continuous from element to 
element. The effects of the elements on each other's midpoints are calculated 
by integrating over the elements, and the integral equation is approximated 
by a set of linear algebraic equations. In the original formulation,(34) Chap- 
lin's method was intended for use with open axisymmetric bodies such as 
ducts, and certain details of the procedure made it awkward to apply to 
general bodies, for example an ordinary closed body. However, this defici- 
ency was subsequently remedied. A few applications to general closed bodies 
are presented by Chaplin,(~) and the calculated restilts are quite accurate. 
Since only a few such examples are presented, it is difficult to compare this 
method with the present method in detail. Both appear equally general for 
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axisymmetric flows. The use of a singularity distribution that varies linearly 
over the elements might enable the method to obtain greater accuracy than 
the present method with the same number of elements. But computing times 
cannot be compared, because Chaplin's method is programmed for a special 
computer. The use of surface vorticity may have certain advantages for inlets 
or propeller shrouds. 

6.3 Conformal-Transformation Methods 
In two dimensions the direct problem of potential f lowis equivalent to 

the problem of finding a conformal transformation that transforms the 
profile curve of the body to a curve for which the solution is known. The 
numerical determination of the proper conformal transformation is thus an 
alternative approach to the solution of potential-flow problems. A very well- 
known method of this type was formulated by Theodorsen. ~aS) Descriptions 
of the method are contained in many standard works, t121 As originally 
formulated Theodorsen's method directly calculates the transformation of 
the given c.urve into a circle. In current usage the profile curve is first altered 
by analytical transformations to remove corners, for example, airfoil trailing 
edges, and produce a smooth shape, preferably one of approximately cir- 
cular shape. (This is sometimes done in the present method, as was men- 
tioned in Section 3.2.) The transformation of this smooth shape to a circle 
is then determined numerically. This method gives excellent results for the 
flow about any single two-dimensional body. It is not known how the com- 
puting time compares with that of the present method. The Theodorsen 
method cannot be applied to the flow about several bodies, for example, 
multiple airfoils, but it can be applied to a single cascade of identical air- 
foils. 

7. COMPARISON OF CALCULATED VELOCITY DISTRIBUTIONS 
WITH EXACT ANALYTIC SOLUTIONS 

In order to determine the accuracy of the present method, surface velocity 
distributions for a variety of body shapes were calculated and compared with 
exact analytic solutions. In most such solutions the onset flow is a uniform 
stream. The accuracies of the examples presented here are typical of those of 
all the calculations that have been made by the present method. In all the 
comparisons, the calculated value is plotted for each control point, and thus 
the number of elements used to approximate the body surface can be deter- 
mined from the figure. 

On any portion of a body surface where the curvature is nonzero, the con- 
trol points used by the present method do not lie exactly on the surface. There 
is thus some uncertainty as to how the calculated and analytic solutions should 
be compared. It was decided to relate the two solutions by means of the unit 
normal vector. A given control point is taken to correspond to the point on 
the true body surface where the unit normal vector to the surface is identical 
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to the unit normal vector of the element on which the control point is located. 
On three-dimensional bodies velocity distributions are often compared along 
curves lying in a plane of symmetry of the body. Since there are no control 
points in a symmetry plane, the calculated results are extrapolated into the 
plane. 

7.1 Two-Dimensional Flows 

Figures 20 and 21 compare analytic and calculated velocity distributions 
on two elliptic cylinders in uniform onset flows parallel to the x-axis. Figure 
20 presents a comparison for an elliptic cylinder of thickness ratio 1/8, 
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FIG. 20. Comparison of analytic and calculated velocity distributions on an elliptic 
cylinder of thickness ratio I/8. 

and Fig. 21 shows results for an elliptic cylinder of thickness ratio 8. The 
first body has a thickness representative of those usually encountered in 
applications, and the second is a thick body that gives r ise to  an extreme 
flow with a maximum velocity equal to nine times free-stream velocity. 
Accurate calculation of the latter type of flow is required for obtaining ftow 
at angle of attack. In both cases the agreement of the calculated and analytic 
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solutions is good. Each body was represented by 90 elements on the top half; 
the bottom half was accounted for by symmetry. For the elliptic cylinder of 
thickness ratio 1/8 the velocity distribution could be calculated to plotting 
accuracy with fewer surface elements. For the elliptic cylinder of thickness 
ratio 8 this number of elements is apparently adequate, but the distribution 
should be altered from that shown in Fig. 21. A more dense distribution of 
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FIG. 21. Comparison o.f analytic and calculated velocity distributions on an elliptic 
cylinder of thickness ratio 8. 

elements near the location o f  maximum velocity would be desirable to 
reduce errors in this region, and it is clear that fewer elements would suffice 
in the ne ighborhood o f  the stagnation point. However,  the accuracy shown in 
Fig. 21 is sufficient for most purposes. 

As is stated in Section 2, the present method cannot be guaranteed a 
priori to be successful for bodies with corners. It is successful, however, 
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for bodies with convex corners, as is illustrated in Fig. 22, which shows the 
analytic and calculated surface velocity distributions on a semi-infinite, 
two-dimensional body of rectangular cross-section. The agreement is seen 

8.0 

6.0 

V/V** 

4 .0  

2.0 

ANALYTIC 

@ • • PR(SENT M;'THO0 

,iol 
.00! .003 .01 ,03 .10 

X~I-Y 

° " " ~  0 o.', ,.o ,.5 ='.o 
0 y 0.5 1 . 0 ~  X 

Vw Y 
[. , ,  . . . . . . . . . . . .  

FIG. 22. Comparison of analytic and calculated velocity distributions on a semi- 
infinite two-dimensional body of rectangular cross:section. Insert shows log-log 

plot of velocities near corner. 

to be quite satisfactory even very near the corner. Since the control points are 
midpoints of  the elements, the velocity is not evaluated at the corner itself 
but at a distance of  half an element width away from it. 

The present method is also successful when the normal velocity on the 
surface of  a body is specified as a discontinuous function of position (another 
exceptional case mentioned in Section 2). The example selected is that of a 
circular cylinder having a uniform inward normal velocity over half its 
circumference and zero normal velocity over the other half. This is thus a 
case of distributed suction. For this flow the integral equation (2.5) can be 
solved analytically and the solution thus obtained is identical with that 
obtained by separation of variables. The calculations of the present method 
are compared with the analytic solution in Fig. 23, which shows tangential 
velocities on the surface of the cylinder. Agreement is good. The control 
point nearest the discontinuity of normal velocity is half an element away. 
As can be seen from the insert of Fig. 23, near the discontinuity of normal 
velocity the velocity approaches infinity as the logarithm of  the distance 
from the discontinuity. This is in contrast to the flow near a convex corner 
where the velocity approaches infinity as a negative power of distance from 
the corner. In addition to the expected symmetry of the flow about the line 
0 = +90 °, the tangential velocity on the cylinder is also symmetric about the 
line 0 = 0 ° or 180 °, although the complete velocity field is not. 

Airfoils occur much more frequently in applications than any other kind 
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of  two-dimensional shape. Lift is accounted for by the use of  a circulatory 
onset flow (see Section 3.5). Figure 24 compares analytic and calculated 
pressure coefficients on a K~trm~in-Trefftz airfoil, whose profile curve is 
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. . . .  

. . . . .  ' /  . . . . .  1 . . . . .  \ -  

FIG. 23. Comparison of analytic and calculated tangential velocity distributions 
on a circular cylinder having a discontinuous normal velocity distribution. Insert 

is a semi-log plot of velocities near the discontinuity of normal velocity. 

shown in the figure, at a lift coefficient of  0.5. (This figure compares pressure 
coefficients rather than velocities so that the magnitude of  the lift can be 
seen directly.) The two pressure distributions are identical except for a small 
region near the negative pressure peak. 

A simple example of  a multiple-body problem is that of  the flow about 
two identical circular cylinders. In the case considered, the distance between 
the centers is one and one-half times the length of  a diameter, and the free- 
stream direction is perpendicular to the line joining the centers. Calculated 
and analytic velocity distributions on one of  the circular cylinders are shown 
in Fig. 25. The two are in good agreement. It is interesting to compare this 
flow to that about a single circular cylinder. When two cylinders are present, 
the magnitude of  the maximum surface velocity is 30 per cent larger than that 
for a single circular cylinder, and the location of  the stagnation point is 
shifted about  4 ~ towards the other cylinder. 

One interesting two-dimensional flow that is not irrotational can be 
calculated by the present method. This is the case of  a uniform shear onset 
flow, which may be defined without loss of  generality as a flow parallel to the 
x-axis having a velocity that varies linearly with y. The vorticity of  this 
flow is constant. Since vorticity is constant along streamlines, the flow 
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FIo. 24. Comparison 'of analytic and calculated pressure distributions on a 
K~trn~n-Trefftz airfoil at a lift coefficient of 0.5. 
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about any body immersed in this onset flow has the same constant value of  
vorticity as the onset flow. Therefore the perturbation flow due to the body 
is irrotational and may be calculated by the present method. As an example 
the flow about  a circular cylinder was computed. The cylinder has a unit 
radius and its center lies on the x-axis. The onset flow is 

Voox = 1 + ~" y, Voou = 0. (7.1.1) 

This flow was chosen because it gives rise to three stagnation points on the 
body. If  the onset flow velocity on the x-axis is unity, a coefficient of  y 
in (7.1.1) less than 4/3 leads to two stagnation points on the body, and a 
coefficient greater than 4/3 leads to four stagnation points. A sketch of  the 
streamline pattern is given in Fig. 26. It can be seen that the "dividing" 
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FIG. 26. Comparison of analytic and calculated velocity distributions on a circular 
cylinder in a uniform shear onset flow. 

streamlines that meet the cylinder at the stagnation points do not intersect 
the surface perpendicularly. In fact the streamline through the lower stag- 
nation point is a tangent to the cylinder. This figure also shows how well the 
calculated and analytic velocity distributions on the cylinder agree for this 
somewhat unusual flow. 

7.2 Axisymmetr ic  Flows 

Figures 27 and 28 compare analytic and calculated velocity distributions 
on two ellipsoids of revolution in uniform onset flows parallel to their 
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FxG. 27. Comparison of analytic and calculated velocity distributions on a prolate 
spheroid of thickness ratio 1/8 in axisymmetric flow. 
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symmetry axes. Figure 27 shows results for a prolate spheroid of thickness 
ratio 1/8, and Fig. 28 is a comparison for an oblate spheroid of thickness 
ratio 8. The latter is an extreme flow with a maximum surface velocity equal 
to 5.91 times free-stream velocity (compare the two-dimensional case of 
Section 7.1). For both bodies 90 surface elements were used. This is more than 
the number required to obtain plotting accuracy for the prolate spheroid. 
For the oblate spheroid some improvement in accuracy could be obtained by 
concentrating additional elements near the location of maximum velocity 
and by using a more sparse distribution near the stagnation point. With the 
element distribution used in Fig. 28, the calculated and analytic solutions are 
identical to plotting accuracy. 

Indirect methods may be used to obtain exact analytic solutions of flows 
about bodies of revolution that can be generated by known source distribu- 
tions along the axis of symmetry (see Section 1.3). Such methods can generate 
solutions for comparison with the calculations of the present method. Such a 
comparison is shown in Fig. 29. The body has a blunt nose and a pointed 
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FIG. 29. Comparison of analytic and calculated velocity distributions on a source- 
sink body. 

tail. The calculated surface velocity distribution agrees fairly well with the 
analytic solution, despite the fact that only 24 elements were used to approxi- 
mate the surface. This shows that useful results can be obtained with small 
numbers of elements if the body is simple enough. 

An analytic solution for an interior flow was generated by superposing 
the flow due to a ring vortex and that due to a uniform stream parallel to the 
axis of the ring. One of the stream surfaces of the resulting flow was con- 
sidered to be an axisymmetric duct, and the flow in this duct was calculated 
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by the present method. The analytic and calculated velocity distributions on 
the surface of the duct are compared in Fig. 30. The calculated solution is 
quite accurate, despite the fact that it used only 80 surface elementsia  
small number for an interior flow with this rather severe contraction ratio. 
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Fio. 30. Comparison of analytic and calculated velocity distributions on the wall 
of an axisymmetric duct generated by superposition of a ring vortex and a uniform 

stream. 

7.3 Cross Flow about Axisymmetric Bodies 

The term cross flow applied to an axisymmtric body is defined in sub- 
section 3.3.4 and in Section 4.3. The two important cases of cross flow are 
the flow due to a uniform onset flow perpendicular to the axis of symmetry of 
the body and the flow due to a body rotating about an axis normal to and 
intersecting its axis of symmetry. Exact analytic solutions for cases of cross 
flow are not abundant. The examples of this section are ellipsoids of revolu- 
tion. The quantities that are compared are T2 and T3, which are defined in 
Section 3.5 and illustrated in Fig. 4. They represent the velocity tangent to 
the profile curve of the body and the circumferential velocity around the 
circular cross-section, respectively. These quantities depend only on axial 
position along the body. 

Figures 31 and 32 compare analytic and calculated velocity distributions 
on two ellipsoids of revolution in uniform onset flows perpendicular to their 
axes of symmetry. The comparison of Fig. 31 is for a prolate spheroid of 
thickness ratio 1/8, and that of Fig. 32 is-for an oblate spheroid of thickness 
ratio 8. The quantity T8 is a constant for each body, which is a special 
property of ellipsoids. For any body, Tz and T3 must be equal at the ends 
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FIG. 31. Comparison of analytic and calculated veMeity distributions on a prolate 
spheroid of  thickness ratio 1/8 in uniform cross flow. 

1 . 6 ~  ANALYTIC 

, , I  . _~ ~ ,HE,ENT_,y,.O0 

1.2 . . . .  ~ 

F -"l '~l 
0 6 I  " / . . . . . . . . . . . . . . . . . . .  . . . . . . .  hO- tO i ! 

L • x 

o 
0 o.2 0.4 0.6 O.B 1,0 

x 

FIG. 32. Comparison of analytic and calculated velocity distributions on an oblate 
spheroid of  thickness ratio 8 in uniform cross flow. 
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of the body on the axis of symmetry. The accuracy of'the calculated solutions 
is seen to be good. 

To provide an example of the flow due to a rotating body, calculations 
were performed for a rotating prolate spheroid of thickness ratio 1/2. Its 
center is at the origin, and it is rotating about the z-axis at a rate of one 
radian per unit time. In a coordinate system fixed in the body, the onset flow 
to the body is a rigid-body rotation of  the surrounding fluid, and this onset 
flow is not irrotational. The perturbation velocity field due to the body, 
which is the entire velocity field in a coordinate system fixed with respect 
to the fluid at infinity, is irrotational. The quantities whose calculated 
and analytic values are compared are the perturbation velocity components. 
Figure 33 compares calculated and analytic values of Tz and T3 on the body 
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Fro. 33. Comparison of analytic and calculated velocity distributions on a prolate 
spheroid of thickness ratio 1/2 that is rotating about its center. 

surface and also compares velocity components at points along a curve off 
the body surface in the flow field. The velocity components at off-body points 
are the total velocity V~, in the xy-plane, which is the vector sum of V= 
and VR of Fig. 4, and the circumferential velocity V o, whose significance 
is also illustrated in Fig. 4. The calculated and analytic values of T2 are 
slightly different near the middle of the body, and the calculated values of 
Ts deviate slightly from the analytic curve near the ends of the body. The- 
calculated solution shown in Fig. 33 used 90 surface elements, which is 
sufficient to obtain plotting accuracy for this body in a uniform onset flow. 
It is not known whether rotational flows in general require more elements 
for equal accuracy or whether this case is special in some sense. The accuracy 
of the calculations at poLnts Off the body is quite satisfactory. 
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7.4 Three-dimensional Flows 

As was pointed out in Section 1.3, virtually the only truly three-dimen- 
sional flow for which an exact analytic solution is available is the flow 
about an ellipsoid with three unequal axes. The ellipsoid selected as an 
example has semi-axes in the x, y, and z directions equal to 1, 2, and ½, 
respectively. The calculation utilized three symmetry planes with 540 elements 
on the nonredundant portion of  the body (4320 total elements). Comparisons 
of  analytic and calculated velocity distributions on this body are presented 
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(a) 
FIG. 34. Comparison of analytic and calculated velocity distributions on an 
ellipsoid with semi axes 1, 2, ½ in the x, y, z directions, respectively. (a) Flow in the 

xz-plane. (b) Flow in the yz-plane. (c) Flow in the xy-plane. 

in Fig. 34. Each of  the three parts of  Fig. 34 shows velocity distributions along 
a curve on the body surface that lies in one of  the symmetry planes. On 
each such curve velocity distributions are given for three uniform onset 
flows, one along each of the coordinate axes. In all cases the velocity in a 
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plane perpendicular to the onset flow is a constant equal to the maximum 
velocity of  the flow. This is a characteristic of ellipsoids. For all the flows, 
the calculated and analytic velocity distributions agree well everywhere 
except near the end of the longest axis of the ellipsoid, the y-axis, for an 
onset flow parallel to the shortest axis of the ellipsoid, the z-axis, (Fig. 34c). 
The two solutions disagree slightly in this region, which is one of relatively 
high curvature, but even there the accuracy is probably sufficient for many 
purposes. 

8. COMPARISON OF CALCULATED AND EXPERIMENTAL 
PRESSURE DISTRIBUTIONS ON VARIOUS CONFIGURATIONS 

8.1 Preliminary Remarks 
In order to justify the use of the present method as a design tool, calculated 

pressure distrib.utions have been compared with experimental data for a 
large number of  body shapes and flow conditions. In view of the good 
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agreement between calculated and analytic solutions that is shown in Section 
7, such comparisons essentially show how well potential flow agrees with real 
flow, that is, to what extent the neglect of viscosity and compressibility is 
justified. The results are most gratifying. The range of flow conditions over 
which potential flow is a useful approximation is quite surprisingly large. 

As a result of comparing the calculations with experiment, it is concluded 
that for ordinary aircraft and marine applications viscosity has an unimpor- 
tant effect on the surface pressure distribution, except in or near regions 
of catastrophic separation. Local regions of separation and reattachment 
do not significantly affect the pressur e distribution. This is illustrated by 
several examples in this section for which calculated and experimental pres- 
sure distlibutions agree despite the obvious presence of local separation, 
which is indicated by the values of the pressure gradient. Even on bodies 
where catastrophic separation does occur, examples of which are the axi- 
symmetric bodies at angles of attack up to 20 ° shown in Section 8.4, the 
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pressure distribution on the portion of the body ahead of the separation point 
is not affected very much. The method can be refined by using the calculated 
pressure distribution to obtain the boundary-layer displacement thickness, 
which is then added to the body shape (including an assumed wake if desired) 
and the calculation repeated. In nonlifting cases, this procedure is straight- 
forward, but it is rarely necessary, and it has not been done for any of the 
examples of this section. In lifting cases, the procedure, which is described 
in Section 8.2, is somewhat more complicated. A single example of the use of 
this refinement is given in that section. 

The compressibility of the fluid does not significantly affect the pressure 
distribution if the value of the local Math number is everywhere smaller 
than approximately one-half. This means that, for the types of bodies occur- 
ring in aircraft applications, compressibility effects may be safely ignored 
for free-stream Math numbers below about 0.3 or 0.4. For higher Math 
numbers, the calculations still agree with experiment if a suitable com- 
pressibility correction is used. In axisymmetric and three-dimensional cases 
the well-known Goethert transformation(17) is used to account for compres- 
sibility. For axisymmetric bodies at angle of attack, Mach number effects on 
the cross-flow terms are ignored, and the axial component of the flow is 
handled in the. same manner as an axisymmetric flow. For two-dimensional 
lifting flows compressibility effects are usually accounted for by use of the 
K~trm~ln-Tsien Mach number correction.(17) If these corrections are Used, 
the calculated and experimental pressure distributions agree for all entirely 
subsonic flows. That is, the method gives good results except near stagnation 
points for all free-stream Mach numbers that do not give rise to local regions 
of supersonic flow. This is illustrated by several examples in this section. 
The use of these compressibility corrections restricts the type of body for 
which pressure distributions can be calculated at high subsonic numbers 
(in contrast to the incompressible case, for which the present method is valid 
for any body shape). For example, very blunt bodies cannot be handled. 
However, good results are obtained for most bodies designed to operate 
in this Mach number range, including some rather complicated shapes that 
are beyond the capability of approximate methods. 

The remainder of this section presents comparisons of calculated and 
experimental pressure distributions. Over the years, a large number of 
comparisons have been collected. Some of these were obtained by the authors 
to evaluate the various parts of the method immediately after they were 
developed. Others were obtained by users of the method during the course of 
design studies. In 1964 all these comparisons, approximately 60 of them, were 
presented in a report.(e) The figures of this section show selected examples 
from Ref. 6 and also some more recent comparisons. Examples have been 
selected to illustrate various types of cases, and preference has been given to 
extreme or unusual flow situations. 



1 06 J. L. HESS AND A. M. O. SMITH 

Calculated and experimental pressures are compared in terms of the pres- 
sure coefficient C~,. In all cases for which the free-stream Mach number is 
large enough to necessitate theuse of a compressibility correction, the Math 
number is given on the figure. When no Mach number is listed, compress- 
bility is ignored, because the flow Mach number is small enough to make 
compressibility unimportant. References for all published data are given both 
on the figure and in the text. When no reference is given, it is to be under- 
stood that the data were collected by personnel of the Douglas Aircraft 
Company during the course of design studies. In many examples of this 
section the body is considered to be semi-infinite. For calculational purposes 
such a body is assumed to have a segment of  constant cross-section about 
five times as long as the segment over which the cross-section is varying (an 
afterbody length equal to about five times the nose length). No attempt has 
been made to account for the wind-tunnel walls in the calculations, although 
in some cases it would have been possible to do so. Usually, the wind- 
tunnel sting is also ignored. 

8.2 Two-dimensional Bodies 

Figure 35 shows calculated and experimental pressure distributions on a 
single airfoil, a Douglas design known as DSMA 387. The experimental data, 
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FIG. 35. Comparison of calculated and experimental pressure distributions on a 
Douglas DSMA 387 airfoil at a lift coefficient of 1.0765. 

which were obtained by Douglas personnel in the Ames 12-ft low-speed wind 
tunnel, were taken from a three-dimensional wing model along a section 
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located 40 per cent of the semispan from the wing's plane of symmetry. 
Both calculated and experimental pressure distributions correspond to a 
lift coefficient of 1.0765; but they correspond to different angles of attack, 
because of the effect of viscosity on the relation between lift and angle of 
attack. The experimental and the calculated pressure distributions agree in the 
neighborhood of the pressure peaks but differ somewhat on the lower surface 
of the airfoil, on the rear portion of the upper surface, and at the trailing 
edge. The difference near the trailing edge is due to a viscous effect whose 
correction is discussed below. 

An example of a triple airfoil is the wing section with slot and slotted 
flap illustrated in the sketch of Fig. 36. The calculated pressure distribution 

-W 

-10 
-Z~ 

Cp 

-14 

010 -- f 
-aS 

0 

1.0 

o • o ~ZPEmmAM~3e 

° 

I 

FIo. 36. Comparison of calculated and experimental pressure distributions on an 
NACA 23012 airfoil with fixed slot and with flap deflected 20 ° at 8 ° angle of attack. 

is compared to low-speed wind tunnel data(3e) for an angle of attack of 8 °. 
Pressure distributions on the three airfoils are shown with the airfoil shapes 
below them, so that the pressure at a particular location can be determined 
immediately. The actual relative positions of the airfoils are shown only in 
the sketch. It can be seen that the calculated pressure distributions agree 
very well with experiment for this extreme flow, except on the flap, whose 
lift is overestimated by the calculations. 

A method of compensatihg for possible viscous effects has been formu- 
lated.(8) It gives satisfactory results, but because it is rather time consuming, 
it is rarely used. First the pressure distribution on the airfoil is calculated in 
the usual way and used to calculate the boundary layer. The displacement 
thickness of the boundary layer is added to the actual body shape to produce a 
modified body shape. The flow about the modified shape is then calculated. 
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Velocities and pressures are evaluated, not on the modified shape, but at 
points in the flow field along the edgeof  the boundary layer of the original 
body. In particular, the Kutta condition is satisfied at the edge of the boundary 
layer at the trailing edge of the airfoil. An example of the results of using this 
refinement of the method is shown in Fig. 37, which compares calculated and 
experimental(s7) pressure distributions on an 11.8 per cent-thick Joukowski 
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Fro. 37. Comparison of a calculated pressure distribution corrected for boundary 
layer effects with experimental data for an 11.8 per cent thick Joukowski airfoil at 

6 ° angle of attack. 

airfoil. Both pressure distributions correspond to an angle of attack of 6 ° . 
The good agreement of the calculation with experiment shows that the effect 
of the boundary-layer thickness on the pressure distribution and the effect 
of viscosity on the relation between lift and angle of attack have been ac- 
counted for correctly. 

Figure 38 shows a comparison of calculated and experimental pressure 
distributions for a case where the free-stream Math number is large enough to 
make compressibility effects significant. The body is an airfoil having an 
S-shaped camber line and operating at a lift coefficient of 0.25. The free- 
stream Mach number is 0.68, and the calculated incompressible pressure 
distribution has been adjusted by means of the K~irm~in-Tsien procedure. 
At the location of minimum pressure on the upper surface of the airfoil, the 
flow is almost sonic, and the calculated pressure distribution differs some- 
wha~t..~m the experimental in this region and also in the vicinity of the 
trailing edge, where boundary-layer effects alter the flow. Over the remainder 
of the airfoil, the agreement of the calculated and the experimental pressure 
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distributions is good. The data of Fig. 38 were obtained by Douglas per- 
sonnel. 

Section 4.5 describes a gener~a ization of the present method that permits 
free-surface effects to be accounted for to first order. This generalization 
was applied to a 12 per cent-thick Joukowski hydrofoil moving at 5 ° angle of 

°[ f F t 1.0 ~ 

FI6. 38. Comparison of calculated and experimental pressure distributions on an 
airfoil at a lift coefficient of 0.25 for a free-stream Math number of 0.68. 

attack at a depth beneath the undisturbed free surface equal to 0.35 chord. 
Calculated and experimental(3s) pressure distributions on the upper surface of 
the foil are shown in Fig. 39. Experimental pressures on the lower surface 
were not available. To exhibit the magnitude of the free-surface effect, the 
calculated pressure distribution at 5 ° angle of attack for the case when no 
free surface is present is also shown. Most of the free-surface effect is pre- 
dicted by the calculations. 

A modification of  the present method (Section 4.6) can calculate flow 
about an infinite cascade of airfoils. Figure 40 compares calculated and ex- 
perimental(39) pressure distributions on an airfoil in a cascade. The airfoil is 
an NACA 65-010 cascade blade, the stagger angle of the cascade is -- 15 °, and 
the flow has an inclination of 30°a t  an infinite distance upstream of the cas- 
cade. The agreement of calculated and experimental pressure is good. 

8.3 Axisymmetric Bodies in Axisymmetric Flow 

Figure 41 shows pressure distributions on a prolate spheroid with an 
annular bump. The low-speed experimental pressure distributiont40) is 
compared with two calculated pressure distributions, one calculated by the 
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FIG. 39. Comparison of calculated and experimental pressure distributions on the 
upper surface of a 12 per cent thick symmetric Joukowski hydrofoil at 5 ° angle of 
attack, Froude number of 0.95, and a trailing-edge depth of 35 per cent chord. 

Also shown is the calculated pressure distribution without .free-surface effect: 
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F~G. 40. C o m p a r i s o n . o f  calculated and experimental  pressure distributions on a 
symmetric  N A C A  65-010 airfoil in cascade  at an inlet angle o f  30 ° and a stagger 

angle o f  - 15 °. 

present m e t h o d  and one calculated by a convent ional  approx imate  method.(41) 
The calculat ions  o f  the present m e t h o d  agree c lose ly  with experiment ,  but the 
convent ional  m e t h o d  comple te ly  fails to respond to the presence o f  the bump.  
This case is admit tedly  an unfavorable  one  for the convent ional  method ,  but 
it shows  h o w  such a m e t h o d  may break d o w n  unexpectedly.  
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Fxo. 41. Comparison of  calculated and experimental pressure distributions on a 
prolate spheroid with an annular bump. 
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FIG. 42. Comparison o f  calculated and experimental pressure distributions on a 
pointed cone-cylinder and a blunted cone-cylinder. 
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Figure 42 compares calculated and experimental pressure distributions on 
two bodies with corners, a pointed cone-cylinder and a blunted cone-cylinder. 
The data were obtained by Douglas personnel in the Douglas low-speed 
wind tunnel. The present method accurately predicts the experimental pres- 
sures even in the vicinity of the corners. This example shows that a pressure 
distribution calculated by the present method may actually be superior to an 
experimental one. Since the calculations for the blunted cone-cylinder agree 
with the data everywhere there are data points, it seems reasonable to con- 
elude that the magnitude of the calculated forward pressure peak is also 
correct. This peak was missed in the tests simply because there was no pressure 
orifice at the proper location. 

Inlets and propeller shrouds are special cases, because it is necessary 
to specify the flow through them, that is, the mass-flow ratio. To accomplish 
this, the present method calculates the flow about an altered configuration 
consisting of the desired inlet or shroud-lip shape followed by a semi-infinite 
afterbody (having constant inner and outer final diameters). Despite the 
necessary alteration of the body shape, the calculated results are quite 
satisfactory. In fact, inlets represent the type of body that occurs most 
frequently in design applications of the present method. Figure 43 compares 
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FIG. 43. Comparison of calculated and experimental pressure distributions on a 
propeller shroud with center-body in static operation. 

calculated and experimental(*-') pressure distributions on the forward portion 
of a propeller shroud in static operation (infinite mass-flow ratio). The center- 
body of the shroud was accounted for in the calculations, but the propeller 
itself was, of course ignored. The actual shroud has a small chord-to-diameter 
ratio, but it was treated as a semi-infinite body in the calculation. The agree- 
ment of calculated and experimental pressures on the inside and on the 
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outside of the shroud is good. A different calcula.tion scheme is required to 
obtain pressures on the aft portion of the shroud. 

For axisymmetric flows, compressibility effects are accounted for by means 
of a Goethert transformation. Figure 44 compares calculated and experi- 
mental¢ 43> pressure distributions of a slender body for free-stream Math 
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FIo. 44. Comparison of  calculated and experimental pressure distributions on an 
indented body at three high subsonic free-stream Mach numbers. 

numbers of 0.8, 0.9, and 0.95. The body profile is a symmetric parabolic arc 
that has been modified by an indentation in the region of maximum thickness. 
The rear of the body has been modified to accommodate the wind-tunnel 
sting, which has been accounted for in the calculation. It can be seen from 
Fig. 44 that only for the Math number of 0.8 is the flow subsonic everywhere. 
For this Math number, the agreement between the calculated and the 
experimental pressure distributions is quite good. At the higher Math 
numbers, the agreement is also good, except in the regions where the flow is 
supersonic. No doubt this agreement is partly fortuitious, but it also reflects 
the fact that local effects are of chief importance in determining surface 
pressures. 

Blunt bodies provide a more severe test of the validity of using the Goethert 
transformation with the present method than pointed bodies do, because 
I 
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the region of sizable .perturbation velocity near the nose is much larger. 
Calculated pressures near the stagnation point are meaningless, but they are 
usually quite good over the remainder of the body, where the perturbation 
velocity is not too large. A usable result is obtained by fairing the calcu- 
lated pressures to the known pressure at the stagnation point. Figure 45 
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Fzo. 45. Comparison of calculated and experimental pressure distributions on a 
Skybolt missile at a free-stream Math number of 0.8. 

shows calculated and experimental pressure distributions on a Skybolt 
missile for a free-stream Mach number of 0.8. The agreement is good even 
near the corners, which were not rounded in the calculation. The experi- 
mental data of Fig. 45 were obtained in the Douglas Aircraft Company 
Aerophysics Laboratory. 

8.4 Axisymmetric Bodies at Angle of  Attack 

The flow about axisymmetric bodies at angle of attack generally separates 
somewhere on the body, and accordingly it might be expected that the present 
method of flow calculation would not give useful results for such cases. How- 
ever, it has been found that calculated and experimental pressure distributions 
agree quite satisfactorily forward of the separation point. Moreover, it is 
remarkable how large the angle-of-attack effect on the pressure may be in 
some cases. 

The present method calculates a pure cross flow (90 ° angle of attack) 
about the body in question and combines this with the axisymmetric flow 
(zero angle of attack) to obtain the flow at any angle of attack. The calculated 
cross flow may be combined with either the calculated or the experimental 
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axisymmetric flow. In some of the following comparisons, experimental 
zero-angle-of attack pressure distributions were used with the calculated 
cross flow, and in others calculated zero-angle-of-attack pressure distribu- 
tions were used. In view of the agreement of calculation and experiment 
shown in Section 8.3, it does not appear to matter which is used. For some 
bodies, data were available for several angles of attack. In such cases, the 
data at the largest angle of attack were selected for comparison with the 
calculation. 

In his Master's thesis, Johnson (44) compared pressure distributions com- 
puted by the present method with experimental data for a series of sharp and 
blunted cone-cylinders at zero angle of attack and at ±20 ° angle of attack. 
This rather high angle of attack is an extreme test of the present method. 
Figure 46 shows art example of these comparisons. The body is a cone- 
cylinder having a semivertex angle of 15 ° that has been blunted by means of a 
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FIa. 46. Comparison of calculated and experimental pressure distributions on a 
blunted 15 ° cone-cylinder at 0 ° and 4-20 ° angle of. attack. 

spherical segment whose radius is equal to one-halftbe radius ofthe cylindrical 
afterbody. The cylindrical afterbody of the wind-tunnel model had a length 
equal to 1.45 times its diameter. In the calculations, however, the body is 
assumed to be semi-infinite. The difference between the body tested and the 
body calculated leads to discrepancies between calculated and experimental 
pressure on the aft portion of the afterbody, but its effect should be negligible 
over the nose region. In the comparison the calculated zero-angle-of-attack 
pressures are used with the calculated cross flow. In Fig. 46 pressures along 
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the top of the body are compared at 0 °, 20 °, and --20 ° angles of attack. Thus 
comparisons are made for both the leeward and windward sides of the body. 
Agreement is good over the nose section of the body, but less satisfactory over 
the afterbody. On the forward portion of the afterbody, the effect of flow 
separation around the sharp corner is important; on the aft portion of the 
afterbody, the effect of the finite length of the body is important. On the 
basis of the results of his comparisons, Johnson concludes: "As a result of 
the correlation, it is seen that the theoretical method studied [the method of 
the present article] produces such excellent agreement with experiment that it 
seems to be unnecessary to perform wind tunnel tests on bodies of revolution 
when very low speed pressure distributions are desired. This could result in 
considerable savings in time and money." 

Tests were conducted in the Douglas Aircraft Company, Santa Monica 
Division Low-Speed Wind Tunnel on an inlet consisting of an NACA 
1-70-100 cowling rounded to a constant inner diameter. In Fig. 47 calculated 
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FIG. 47. Comparison of calculated and experimental pressure distributions on the 
exterior of an in|ct l ip at 6 ° angle of attack for two mass flow ratios, 

and experimental pressure distributions are compared on the upper (leeward) 
side of the exterior surface of the inlet lip at 6 ° angle of attack. Comparisons 
are shown for two different values of mass-flow ratio• The experimental 
zero-angle-of-attack pressure distributions, which are used with the calculated 
cross flow, are also shown to exhibit the magnitude of the angle-of-attack 
effects. Agreement is good. The calculations correctly predict the presence 
of a large negative pressure peak at the smaller mass-flow ratio and the 
absence of such a peak at the higher mass-flow ratio. 
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An example of a multiple body is the cowling with spinner shown in 
Fig. 48. This figure compares calculated and experimental(45) pressure distri- 
butions on the upper (leeward) side of the spinner at 6 ° angle of attack. Also 
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FIo. 48. Comparison of calculated and experimental pressure distributions on an 
NACA 1-60-060 spinner in an NACA 1-70-100 cowling. 

shown is the zero-angle-of-attack pressure distribution, which is used with the 
calculated cross flow. The calculated and experimental pressures are in good 
agreement. Over the forward portion of the spinner, the pressures at 6 ° angle 
of  attack are more negative than those at 0 ° angle of attack, as is to be 
expected on the upper side of a body. On the downstream portion of the 
spinner, however, the effect of the cowling reverses the situation, and the 
change of pressure due to angle of attack is positive near the cowling. This 
somewhat unexpected behavior is accurately predicted by the present method. 

To calculate pressure distributions on bodies of revolution at angle of 
attack for Math numbers at which compressibility effects are significant, the 
calculated incompressible cross flow is used with the zero-angle-of-attack 
pressure distribution---calculated o r  experimental--at the proper Math 
number. Figure 49 compares calculated and experimental(4e) circumferential 
pressure distributions on a body of fineness ratio 12. The figure shows results 
for two Math numbers at an axial location I0 per cent of the length of the 
body from the nose. The zero-angle-of-attack pressure, which is simply a 
constant for each Math number, is used with the calculated cross flow. The 
good agreement of the calculated and the experimental pressure distributions 
justifies the use of an incompressible cross flow. 
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Nelson (47) has developed a procedure for using the results of  the present 
method to calculate hydrodynamic coefficients for a blunt-based axisymmetric 
body, that is, to calculate hydrodynamic forces and moments on a maneuvering 
body due to translation, rotation, and acceleration. (The best-known hydro- 
dynamic coefficient is the apparent mass.) He has compared calculated results 
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Fla. 49. Comparison of calculated and experimental circumferential pressure 
distributions at an axial location 0.1 of body length on a body at angle of attack 

for two high-subsonic free-stream Mach numbers. 

with experimental data for eight hydrodynamic coefficients of  a Polaris 
missile. Table 3 lists the average of  the absolute values of  the percentage errors 
obtained for the eight coefficients by calculations using the present method 
and the same average percentage error resulting from the use of  a conventional 
calculation. Also shown are the maximum percentage errors in an individual 
coefficient for the two methods. The superiority of  the calculation using the 
present method is evident. 

TABLE 3 
COMPARISON OF ERRORS IN CALCULATED HYDRODYNAMIC COEFFICIENTS 

OF A POLARIS MISSILE 

Calculation using present 
method 

Conventional calculation 

Average absolute value 
of percentage error for 

eight coefficients 

4.9 

11.7 

Maximum percentage error 
in an individual 

coefficient 

7.3 

23.5 
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8.5 Three-dimensional Bodies 
For three-dimensional bodies an entire surface must be approximated by 

elements instead of just a single curve. Even if many more elements are used, 
the present method is less accurate for three-dimensional bodies than for two- 
dimensional and axisymmetric bodies. The calculations are quite satisfactory 
for single bodies of fairly simple shape. For complicated bodies, and in 
particular for multiple-body interference problems, the calculations give 
useful information in the sense that a fair approximation of experiment is 
obtained, but the high degree of accuracy that is apparent in the comparisons 
of the preceeding sections is not normally realized. 

Recently, Douglas personnel drastically redesigned the nose region of a 
C-135 aircraft, in order to accommodate a 70-in. steerable antenna for com- 
munication with the Apollo spacecraft. Essentially, the airplane was fitted 
with a very large radome. The present method was used in evaluating some of 
the designs considered, and in some cases comparisons with experiment were 
obtained. Figure 50 shows the surface elements used to approximate one 

FIo. 50. Elcmcnts used to approximate a C-135 fuselage with a large radorne. 
(Unrctouehcd output from an automatic plotter.) 

shape that was considered. (Such graphical displays of the elements are 
obtained automatically and are often useful in detecting input errors.) 
Calculated and experimental pressure distributions along three curves on the 
surface are compared in Fig. 51. Pressures along the top and bottom of the 
body in the symmetry plane are shown, as are pressures along the curve of 
maximum breadth on the side of the body. The data of Fig. 51 are from a 
test at a free-stream Mach number of 0.4, but the calculated pressure distri- 
butions are for incompressible flow. The good agreement of calculation 
and experiment justifies the neglect of  compressibility in the former. Figure 52 
shows the isobars oalculatcd by the present method. Experimental isobars 
could not be obtained, because pressures were not recorded at enough 
locations to define them accurately. 
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FzG. 51. Comparison of calculated and experimental pressure distributions on a 
C-135 fuselage with a large radome at zero angle of attack. 
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FIG.  52.  C a l c u l a t e d  isobars on  a C - ) 3 5  fuselage w i th  a large r a d o m e  at zero  angle  
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Figure 53 shows a delta wing of aspect ratio unity whose section shape is 
a 12 per cent thick parabolic arc. The calculated and experimentalI4S) isobars 
for the condition of zero lift are also presented. The two patterns are seen to 
be essentially identical. More precise comparisons are shown in Fig. 54, which 
compares calculated and experimental spanwise pressure distributions for 
three chordwise locations in the midplane, that is, pressures are plotted 
versus distance perpendicular to the midplane at three stations along the 
midplane chord. Experimental data are shown for both the upper surface 
and the lower surface. By symmetry, the pressure at any locations hould be 
identical on the upper and lower surfaces, so that the differences between 
these pressures give a measure of the experimental error. The calculated 
and experimental pressures agree to within experimental error. 
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Flo. 53. Comparison of calculated and experimental isobars on a symmetric delta 
wing at zero lift. 
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FIG. 54. Comparison of calculated and experimental spanwise pressure distribu- 
tions on a symmetric delta wing at zero lift. 

W. L. Moore o f  the David Taylor Model Basin, Carderock, Maryland 
used the present method to calculate the pressure distribution on a pair of  
intersecting wings, as shown in Fig. 55. The wings were straight and un- 
tapered, and had constant, symmetric airfoil sections that differed only in 
thickness ratio, one being 20 per cent thick and the other I0 per cent thick. 
The wings, which were considered to be infinite in both spanwise directions, 
intersected at a fight angle, and thus the complete configuration had two 
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FIG. 55. Comparison of calculated and experimental pressure distributions on a 
pair of straight non-lifting wings of constant  symmetric airfoil section that intersect 
at a right angle. (a) Pressures on the 20 per cent thick wing. (b) Pressures on the 

10 per cent thick wing. 

perpendicular planes of symmetry. The direction of the onset flow was 
parallel to both symmetry planes, and thus both wings were nonlifting. 
Tests of this configuration were conducted in the David Taylor Model Basin 
Low Speed Wind Tunnel. Comparisons of the calculated and experimental 
pressure distributions were made and furnished the authors by Mr. Moore in 
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a private communication.* The comparisons are shown in Fig. 55. The effect 
on the pressures of the thickening of the boundary layer in the intersection 
is quite evident from the data on the aft portion of the wings in the inter- 
section and at the spanwise station nearest to the intersection (0.2 chord). 
At these locations, calculated and experimental pressures agree only over the 
forward half of the wings. At the spanwise stations farther from the inter- 
section, the agreement is fairly good over the entire chord, with calculated 
pressures generally less negative than experimental ones. The pressure 
distributions on the wings, identical in the intersection, become almost 
two-dimensional far out along the span. The variations of pressure with 
distance along the span are quite different for the two wings, since their 
thicknesses, which determine their two-dimensional pressure distributions, 
differ by a factor of  two. The spanwise variation of pressure distribution 
is predicted fairly well by the calculations. 

Probably the most extreme case to which the present method has been 
applied is the calculation of the mutual interference between the wing, pylon, 
and nacelle of the DC-8. The configuration about which the flow was calcu- 
lated is sketched in Fig. 56. It consists of a short portion of the DC-8 wing 
to which is attached the inboard nacelle and pylon, and the mirror image of 

Fro. 56. Adjusted DC-8 wing-pylon-nacelle combination. 

this wing-pylon-nacelle combination. Thus the two pylon-nacelles are much 
closer together in the calculated configuration than they are on the airplane. 
It was hoped that the resulting increase in mutual interference between the 
pylon-nacelles would partially compensate for the omission of the fuselage. 

*Addition in Proof: Mr. Moore subsequently collected his findings into David Taylor 
Model Basin Report No. 2131, Some Theoretical and Experimental Results on Pressure 
Interaction of Hydrofoil Boat Components (November 1965). 
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In any event, such an effect should be small. The pressure distribution is 
chiefly determined by the local wing-pylon-nacelle geometry. The calculations 
were performed for the nonlifting condition. This rather complicated geo- 
metry includes both the upper and lower wing surfaces and both interior and 
exterior nacelle surfaces. The wind-tunnel data with which the calculations 
were compared were obtained, by Douglas personnel, at the Math number 
of 0.825, which was high enough to cause local regions of supersonic flow. 
The model tested was a complete DC-8 and thus differed from the calculated 
configuration by the presence of the fuselage, outboard wing, and outboard 
nacelles. Figure 57 compares calculated and experimental pressure distribu- 
tions on the pylon. The Goethert transformation was used to account for 
compressibility. As is indicated in the figure, the calculated and the experi- 
mental pressures Were obtained at slightly different locations. The Regions 
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of supersonic flow are evident. The agreement of calculated and experimental 
pressures is considered to be good, under the circumstances. In particular, 
the calculations predict, correctly, that the pressure peaks on the inboard 
side of the pylon are considerably more negative than those on the outboard 
side, which is the result of chief design interest. 

9. CALCULATED FLOWS ABOUT CERTAIN BODIES 

9.1 Some Families of Bodies that are Usefid in Design Studies 

In design applications the present method is usually used to calculate 
the flow about a specific body of interest, but it has also proved useful in 
other ways. On several occasions the method has been used to calculate 
velocity distributions on certain one-parameter families of bodies, when 
there was no immediate need for this information. The results have been used 
repeatedly to quickly obtain approximate information about the nature of 
velocity distributions on a body with the same general geometric properties 
as a body belonging to one of the families. The bodies for which calculations 
have been performed are semi-infinite. Each consists of a certain nose shape 
of finite length followed by a semi-infinite afterbody of constant thickness. 
(As is stated in Section 8. l, in the calculation the afterbody length is taken to 
about five times the nose length.) This type of body seems to arise more often 
in applications than any other. Some examples of calculated velocity distri- 
butions on bodies of these families are presented below. 
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Fro. 58. Calculated velocity distributions on semi-infinite two-dimensional bodies 
with elliptical noses. 
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A family that is useful for studying thickness effects for blunt semi-infinite 
bodies is composed of bodies with elliptical noses. The bodies may be 
either two-dimensional or axisymmetric. (An axisymmetric body of this 
shape is commonly called an ellipsoid-cylinder, but apparently there is no 
name for the two-dimensional analogue.) Figures 58 and 59 show calculated 
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FIG. 59. Calculated velocity distributions on semi-infinite axisymmetric bodies 
with elliptical noses. 

surface velocity distributions on bodies of this family having various nose 
thickness ratios, two-dimensional bodies in Fig. 58 and axisymmetric bodies 
in Fig. 59. In every case the onset flow is a uniform stream parallel to the 
semi-infinite afterbody. A comparison of the two figures shows similarly 
shaped velocity distributions for corresponding bodies but higher velocities 
for the two-dimensional bodies. The reduction of surface velocity in the 
axisymmetrie ease compared to the two-dimensional case is sometimes called 
"three-dimensional relief". The variation of maximum surface velocity with 
nose thickness ratio is shown in each case and compared with the result for 
the family of bodies whose profile curves are complete ellipses (elliptic 
cylinder and ellipsoid) to exhibit the reduction of the maximum surface 
velocity due to the presence of the semi-infinite afterbody. 

To illustrate thickness effects for pointed semi-infinite bodies, a family 
was selected whose members have ogival noses. That is, the profile curve of 
the nose is a circular arc that joins the afterbody with continuous slope. 
Calculated surface velocity distributions for various nose thickness ratios 
are shown in Figs. 60 and 61 for the two-dimensional and axisymmetric 
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FIo. 61. Calculated velocity distributions on semi-infinite axisymmetric bodies 
with circular-arc noses. 

cases, respectively. The onset flows are uniform streams parallel to the semi- 
infinite afterbodies. The variation of maximum surface velocity with nose 
thickness ratio is also shown in each figure. 

Another frequently occurring application is that in which the nose thickness 
ratio is fixed and it is desi~d to investigate the effects on the surface velocity 
distribution of other geometric parameters of the nose shape, for example, 
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nose bluntness. Figures 62 and 63 show calculated velocity distributions 
on a family of blunt shapes whose nose lengths are 2.5 times the thicknesses 
of their afterbodies. The equations of the nose shapes, which are shown 
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FIG. 62. Calculated velocity distributions on semi-infinite two-dimensional  bodies 
with modified elliptical noses of  20 per cent semi-thickness. 
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FIG. 63. Calculated velocity distributions on semi-infinite axisymmetric bodies 
with modified elliptical noses of  20 per cent semi-thickness. 
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in the figures, are obtained by varying the exponent of y in the standard 
equation of an ellipse. Both the two-dimensional shapes of Fig. 62 and the 
axisymmetric shapes of Fig. 63 are in uniform onset flows parallel to their 
afterbodies. For members of this family, the velocity distribution is rather 
sensitive to the value of the exponent, although at approximately 50 per cent 
of the nose length the velocity is nearly the same for all bodies. For the 
two-dimensional case, the body with the elliptical nose has very nearly the 
smallest maximum velocity of any member of the family, but this is not true 
for the axisymmetric case. 

9.2 Some Unusual Bodies 

On several occasions flow calculations have been performed for certain 
bodies that are rather different from those that occur in ordinary applications. 
Often the motivation is simply curiosity. Some of these calculations illustrate 
flow phenomena that do not occur in any of the well-known examples of 
potential flow. Others show applications that may sometime be of practical 
use. Some examples of these calculated flows are presented in this section. 

Figure 64 shows a symmetric, 20 per cent-thick two-dimensional body that 
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Fro. 64. Calculated pressure distribution on a two-dimensional body having zero 
curvature  radius at the location of maximum thickness. 
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appears qualitatively similar to an ellipse. The equation of the profile curve 
of the body is given in the figure. Although the radius of curvature of the 
profile appears to be rather large at the point of  maximum thickness, x = 0, 
it is easily verified from the equation that the radius of  curvature is zero 
there. On each side of  the point x = 0 there is a small region in which the 
radius of  curvature falls rapidly to zero. The slope of  the profile curve is 
continuous. The calculated surface pressure distribution due to a uniform free 
stream parallel to the x-axis is shown in the figure. A very dense concentra- 
tion of elements near x = 0 was used. It can be seen that the unusual curva- 
ture variation of  the profile is reflected in the pressure distribution, which 
has a sharp peak at x = 0. The pressure distribution on an elliptic cylinder 
of the same thickness ratio is, on the contrary, very fiat, with a significantly 
lower value of  peak pressure (the minimum value of C~ on a 20 per cent-thick 
elliptic cylinder is --0.44). The ability to account for small details of a 
body surface that may have significant effects on the flow is an important 
advantage of the present method. 

A "yo-yo"-type body is an axisymmetric shape that has a small circular 
neck joining two circular flanges. The profile curve of such a body is shown 
in Fig. 65, with the symmetry axis vertical. The cross flow about this body 

~ f  

FIG. 65. Calculated streamlines in the plane containing the onset flow vector and the 
body's symmetry axis for uniform cross flow about  an axisymmetric yo-yo type 

body. 

was computed for the case of a uniform onset flow whose direction is from 
left to right on the figure. Velocity components were evaluated at a large 
number of points off the body surface, and streamlines were constructed by 
the method ofisoclines. The streamline pattern in the plane containing the 
onset flow vector and the body's symmetry axis is shown in Fig. 65. On each 
side of the body there are three stagnation points--one at the center of the 
neck and one on each flange near the point of maximum body diameter. All 
the streamlines between the two "dividing" streamlines that meet the body 
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at the stagnation points on the flanges come together at the windward stag- 
nation point on the neck and travel around the neck as a single streamline, 
which branches into many streamlines at the leeward stagnation point on the 
neck. This behavior is essentially three-dimensional and cannot occur in two- 
dimensional or axisymmetric flows. The two "dividing" streamlines behave 
in a more familiar manner. Each one branches at a windward stagnation 
point into many streamlines, which traverse the body and join again at a 
leeward stagnation point. 

An example of an interior flow field is shown in Fig. 66. The body is 
an axisymmetric duct in which a uniform flow in a circular pipe is diffused 

FIG. 66. Calculated isobars in a radial diffuser. 

radially outward. The calculated isobars are shown in the figure. Although 
this flow was computed simply as an interesting example, the case of a radial 
diffuser has subsequently become a fairly common one in design applications. 
The problem is usually to shape the curved portion of the diffuser to obtain 
certain favorable flow properties. 

A case that may have applications is a flush inlet in an infinite plane 
with a uniform onset flow parallel to the plane. The profile curve of the body 
is shown in Fig. 67. The inlet lips are polynomial curves that smoothly join 
the infinite plane to the straight parallel walls inside the inlet. The inlet 
was considered both as a two-dimensional body and as an axisymmetric 
body whose symmetry axis is the center line of the inlet. For each inlet two 
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fundamental solutions were calculated: the flow due to a uniform onset flow 
from left to right for the case of zero flow far inside the inlet and the flow due 
to a unit flow far inside the inlet with no onset flow. By combining these two 
flows the flow for any ratio of inlet velocity to free-stream velocity can be 
obtained. The velocity distributions shown in Fig. 67 are for the case when 
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FIG. 67. Calculated velocity distributions on a two-dimensional and on an axi- 
symmetric flush inlet for an inlet velocity equal to free-stream velocity. 

the velocity far inside the inlet equals the velocity of the onset flow. The sign 
convention for velocity is the one described in Section 3. The velocity is 
positive if the flow field lies to the left with respect to the velocity vector, and 
it is negative if the flow field lies to the right. Thus far inside the inlet the 
velocity is positive on the left wall and negative on the right wall. For the 
axisymmetric inlet velocity distributions in two planes are shown in the 
figure. The first is the velocity in the plane containing the onset flow vector 
and the inlet centerline (the plane of the sketch in the figure). Comparing this 
velocity distribution with that for the two-dimensional case contrasts the 
flow near a long slot inlet with that near a circular inlet. As expected the 
approach to free-stream velocity along the infinite plane is more rapid for the 
axisymmetric inlet than for the two-dimensional inlet. On the windward 
side the velocity peak is higher for the two-dimensional inlet than for the 
axisymmetric inlet, but this situation is reversed on the leeward side. The 
"wiggles" near the windward velocity peaks are perhaps surprising, because 
the surface is smooth in that vicinity. But the accuracy of the calculations is 
such that they are apparently real. The variation of velocity is smooth for 
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both fundamental solutions for both inlets. The "wiggles" arise from adding 
two functions whose peaks are in different locations. The third curve shown 
in Fig. 67 gives the velocity magnitude for the axisymmetric inlet in the plane 
that contains the inlet centerline and is normal to the onset flow vector (the 
plane normal to the sketch in the figure). This distribution is shown only 
on one side of the inlet because it is symmetrical. 

10. OTHER PHYSICAL PROBLEMS 

10.1 Types of Problems 

It is evident that the idea of reducing a boundary-value problem for a 
partial differential equation to an integral equation over the boundary 
surface can be applied to physical problems other than that of potential flow. 
This approach appears attractive for many linear problems governed by 
elliptic partial differential equations. In several applications the mathe- 
matical formulation describes the physical situation exactly, or nearly so, and 
experimental verification, such as that of Section 8, is not required. To date, 
two types of problems have received attention: those governed by Laplace's 
equation, with various boundary conditions, and those governed by the 
H¢lmholtz equation, which is the next simplest elliptic equation after 
Laplace's. 

Laplacc's equation with Dirichlet boundary conditions (the potential 
itself is specified on the boundary) governs certain problems of electrostatic 
potential and steady-state temperature distributions. Laplace's equation with 
Neumann boundary conditions (the normal derivative is specified on the 
boundary) has several applications outside of fluid dynamics. Mixed boun- 
dary conditions for Laplace's equation also have a variety of applications. 

The Helmholtz equation is derived from the wave equation by assuming 
that all quantities have a harmonic dependence on time at a single frequency. 
Thus it governs problems of "steady" wave propagation, in particular 
propagation of acoustic waves. For the latter problem, the potential is 
proportional to the perturbation pressure in the fluid medium, and both it and 
the fluid velocity are complex. Boundary conditions for the Heimholtz 
equation may be Dirichlet, Neumann, or mixed. 

The authors have modified the present method in several ways to make 
it applicable to different boundary conditions and different partial differential 
equations. These modifications are described briefly in Section 10.2. Several 
other investigators have applied integral equation techniques to the solution 
of various physical problems. Their work is described in Section 10.3. 
Since the present authors are not familiar with the literature of all fields, the 
investigations cited in Section 10.3 should be considered to be simply a 
group of examples. 
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10.2 Extensions of the Present Method 
The ~resent method has been modified by the' authors to solve Laplace's 

equation with Dirichlet boundary conditions for both two-dimensional and 
axisymmetric boundaries. Both surface source distributions and surface 
dipole distributions have been employed. Use of the former leads to an 
integral equation of the first kind; use of the latter gives an integral equation 
of the second kind, which is quite similar to that obtained for the fluid- 
dynamics problem (Neumann boundary conditions) with a source distribu- 
tion. A limited amount of experience indicates that it is preferable to use 
dipole distributions for interior problems and source distributions for ex- 
terior problems, but considerable study remains to be done before any result 
can be stated with confidence. A similar modification could be made for 
three-dimensional problems with Diriehlet boundary conditions, but it would 
be difficult to use a surface source distribution in a three-dimensional case. 
The coefficient matrix of the set of linear algebraic equations that approximate 
the resulting integral equation of the first kind does not have a dominant 
main diagonal, and the iterative solution methods, whose use is indicated by 
the large order of  this matrix, would almost certainly not converge. 

The present method is now being modified to calculate solutions of the 
three-dimensional Helmholtz equation with Neumann boundary conditions. 
The point source potential l/r that is appropriate for Laplace's equation is 
replaced by the "point source" potential for the Helmholtz equation, which 
is 

e i kr  

9, = - (10.2.1). 
r 

where the constant k is the wave number. All procedures used are logically 
similar to those used for the fluid dynamics problem. A complex Fredholm 
equation of the second kind for the surface source density is approximated by 
a set of linear algebraic equations for the values of source density on plane 
quadrilateral surface elements. 

10.3 Integral Equation Methods hi the Literature 

10.3.1 Laplaee's equation. A problem governed by taplace's equation with 
Neumann boundary conditions is that of determining the magnetic field 
exterior to a superconducting body. Such a problem is considered by 
Bourke, ~49) whose specific application is a magnetically-supported rotor. 
Since the mathematics is identical to that of the fluid dynamics problem, the 
present method is used without modification. Both axisymmetric and "cross 
flow" eases are considered. 

Jaswon and Ponter ~50) consider a two-dimensional problem with Neumann 
boundary conditions. They solve the St. Venant torsion problem, which is 
usually formulated with Dirichlet boundary conditions, and the principal 
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interest is in interior problems. Green's theorem is used to obtain an integral 
equation of  the second kind for the warping function. A set of control 
points is used; the integral is evaluated by Simpson's rule (except for local 
effects); and the integral equation is approximated by a set of linear algebraic 
equations for the values of the warping function at the control points. 

Cruise ~51> investigates the axisymmetric case with Dirichlet boundary 
conditions. The specific problem of interest is that of the electric field about 
surfaces on which the potential is known, in particular conductors. The 
method of solution uses a surface distribution of source density, which 
in this case has physical significance, since it is the electric-charge density. 
Application of the boundary condition leads to an integral equation of the 
first kind. The body profile is approximated by straight-line elements, over 
each of which the source density is assumed to be constant. Integrations of the 
ring source formulas over the elements are performed numerically, and the 
boundary conditions are satisfied at the midpoints of the elements to give a 
set of linear algebraic equations for the values of surface source density. 
Thus the method of solution is exactly the same as the present method. 

10.3.2 Helmholtz equation. Several authors have developed general methods 
for solving boundary-value problems governed by the Helmholtz equation 
based on the reduction of these problems to integral equations over the 
boundary surfaces. Banaugh and Goldsmith ~52~ solve the two-dimensional 
problem by using a specialization of Green's theorem known as Weber's 
equation, which expresses the potential as an integral over the boundary of a 
linear function of the potential and its normal derivative. The resulting integral 
equation is of the first kind for Dirichlet boundary conditions and of the 
second kind for Neumann boundary conditions. The integral is evaluated by 
the trapezoidal rule to give a set of linear algebraic equations for the values 
of the potential at control points on the profile curve of the body. As pro- 
grammed, the method requires as input equations for the boundary location, 
slope, and curvature. The possibility of inputting only the coordinates of a 
set of points on the boundary is mentioned as one requiring numerical 
evaluation of the second derivatives. 

Chertock( ~> considers axisymmetric boundaries on which Neumann 
boundary conditions are prescribed. The boundary condition is not restricted 
to the axisymmetric case, but is only required to have a known Fourier 

series in the circumferential angle with coefficients depending on axial 
location. Each term of the Fourier series for the boundary condition gives 
rise to a term in the Fourier series for the solution with the same circum- 
ferential variation. (This situation causes the essential simplicity of the cross- 
flow ease as treated by the present method.¢ 21) A solution is calculated for 
each separate term of the series for the boundary condition, and the results 
are linearly combined. Chertok's solution uses a specialization of Green's 
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theorem known as the Helmholtz integral, which for Neumann boundary 
conditions lead to an integral equation of  the second kind for the  pressure 
along the profile curve of  the body. Integrations in the circumferential 
direction and along the profile curve are performed by quadrature formulas. 
The result is a set of  linear algebraic equations for the values of  pressure at 
control points on the profile curve. The equations are solved by iteration. 

Chen and Schweikert t~ solve the three-dimensional Helmholtz equation. 
A source density distribution on the boundary is used to satisfy Neumann 
boundary conditions, and the result is an integral equation of  the second 
kind. The boundary surface is approximated by plane triangular surface 
elements, over each of  which the source density is assumed to be constant. 
The point  source formulas are integrated numerically over the individual 
elements after a preliminary transformation. A set of  linear algebraic equa- 
tions is obtained for the values of  the source density on the surface elements. 
Except for the numerical integration over the elements, this approach is con- 
ceptually identical to that of  the present method. Chen and Schweikert also 
consider a more general problem whose solution accounts for the dynamic 
interaction between the boundary surface and the fluid in which it is immersed. 
The lafter problem requires matrix multiplications of  N × N matrices, where 
N is the number of  surface elements used to approximate the boundary. 
Such a multiplication requires N a additions and multiplications (roughly 
three times the number required by a direct solution). Probably as a result of  
this, the maximum number of  surface elements that can be used (unless the 
boundary has certain symmetries) is limited to approximately 100---a rather 
small number for a three-dimensional surface. 

REFERENCES 

1. A. M. O. SMITH and J. PIERCE, Exact solution of the Neumann problem. Calculation of 
plane and axially symmetric flows about or within arbitrary boundaries, Douglas 
Aircraft Company Report No. 26988 (April 1958). [A brief summary is contained in the 
Proceedings of the Third U.S. National Congress of Applied Mechanics, Brown Univer- 
sity, (1958)]. 

2. J. L. HEss, Calculation of potential flow about bodies of revolution having axes per- 
pendicular to the free-stream direction, Journal of the Aerospace Sciences, 29, 726 (1962). 

3. J. L. H~ss and A. M. O. SMITH, Calculation of nonlifting potential flow about arbitrary 
three-dimensional bodies, Journal of Ship Research, 8, No. 2, 22 (September 1964). 
[A somewhat expanded version is contained in Douglas Aircraft Company Report 
No. ES 40622 (March, 1962).] 

4. J. P. GI~ING, Extension of the Douglas Neumann program to problems of lifting 
infinite cascades, Douglas Aircraft Company Report No. LB 31653 (July 1964). 

5. J. L. H~ss, Extension of the Douglas-Neumann program for axisymmetric bodies to 
include calculation of potential, non-uniform cross flow, added mass, and conductor 
problems, Douglas Aircraft Company Report No. LB 31765 (September 1964). 

6. S. F^ULKNER, J. L. HESS and J. P. GP:tSlNG, Comparison of experimental pressure 
distributions with those calculated by the Douglas Neumann program, Douglas 
Aircraft Company Report No. LB 31831 (December 1964). 



CALCULATION OF POTENTIAL FLOW ABOUT ARBITRARY BODIES 137 

7. J. P. GIESINO and A. M. O. SMITH, Potential flow about two-dimensional hydrofoils, 
Douglas Aircraft Company Engineering Paper No. 3541 (1965). (To be published in 
Journal of Fluid Mechanics). 

8. J. P. GiF..SING, Potential Flow about two-dimensional airfoils, Douglas Aircraft 
Company Report No. LB 31946 (1966). 

9. H. LAMa, Hydrodynamics, Cambridge University Press, London (1932). 
10. P. M. MORSE and H. FESHeACH, Methods of Theoretical Physics, McGraw-Hill, New 

York (1953). 
11. P. MOON and D. E. SPENCER, Field Theory for Engineers, Van Nostrand, Princeton 

(1961). 
12. B. THWAITES (Ed.), Incompressible Aerodynamics, Fluid Motion Memoirs, Oxford 

University Press (1960). 
13. M. VAN DYKE, Perturbation Methods in FluM Dynamics, Academic Press, New York 

(1964). 
14. T. YON KARM.~N, Calculation of pressure distribution on airship hulls, NACA TM 574 

0930). 
15. O. D. KELLOGG, Foundations of Potential Theory, Frederick Ungar Publishing Co., 

New York (1929). Chapter 11. [Also available from Dover Publications, Inc., New 
York.] 

16. R, H. LEw, Preliminary report on a proposed method of calculating pressure distribu- 
tions over arbitrary bodies, Canadair Limited Report No. RAA-00-113 (October, 
1959). 

17. W. R. SEARS (Ed.), General Theory of High Speed AerodynamicY, Vol. VI of High 
Speed Aerodynamics and Jet Propulsion, Princeton University Press (1954), p. 79, 
p. 501. 

18. I. LOTZ, Calculation of potential flow past airship bodies in yaw, NACA TM 675 
Ouly 1932). 

19. J. A. STRA'rroN, Electromagnetic Theory,McGraw-Hill, New York (1941), Chapter 3. 
20. S. FLOGGE (Ed.), Encyclopedia of Physics, Vol. IX, Fluid Dynamics, IlI. Section on 

surface waves, by J. V. Wehausen and E. V. Laitone, Springer-Verlag, Berlin (1960). 
21. J. J. STOKER, Water Waves, Interscience, New York (1957). 
22. N. E. Koc}IIN, I. A. KmEL and N. V. RozE, Theoretical Hydromechanics, Interscience, 

New York (1964). 
23. A~oN., Tables of the exponential integral for complex arguments, Nat. Bur. of Stds., 

App. Math. Series 51, U.S. Govt. Printing Office (1958). 
24. E. W. PURCELL, The vector method of solving simultaneous linear equations, Journal 

of Math. Phys., 23, 180 (1953). " 
25. R. S. VARGA, Matrix Iterative Analysis, Prentice-Hall, Engiewood Cliffs, New Jersey 

(1962). 
26. G. E. FonsY~E and W. R. W^sow, Finite-Difference Methods for Partial Differential 

Equations, John Wiley, New York (1960). 
27. F. VANDREY, On the calculation of the transverse potential flow past a body of revolu- 

tion with the aid of the method of Mrs. Fltigge-Lotz, AstiR AD.40 089. 
28. F. VANDREY, A method for calculating the pressure distribution of a body of revolution 

moving in a circular path through a perfect incompressible fluid, Aeronautical Research 
Council R and M, No. 3139 (1960). See also: A direct iteration method for the calcu- 
lation of the velocity distribution of bodies of revolution and symmetrical profiles. 
Aeronautical Research Council R and M No. 3374 (1964). 

29. W. PRAOER, Die Druckverteilung an K6rpern in ebener Potentialstr6mung, Physik. 
Zeitschr. XXIX, 865 (1928). 

30. E. MARTENSEN, Berechnung der Druckverteilung an Gitterprofilen in ebener Potential- 
str6mung mit einer Fredholmschen Integralgleichung, Arch. Rat. Mech. and Analysis, 3 
No. 3 (1959), p. 235. 

31. K. W. JACOe, Some programs for incompressible aerodynamic flow calculations, 
Calif. Inst. of Tech. Computing Center Tech. Rept. No. 122 (February 1964). 

32. L. L^h'DWEBER, The axially symmetric potential flow about elongated bodies of revolu- 
tion, David Taylor Model Basin Report No. 761 (August 1951). 



138 J. L. HESS AND A. M. O. SMITH 

33. L. LANDWEBER, Potential flow about bodies of revolution and symmetric two-dimen- 
sional forms, State University of Iowa Institute of Hydraulic Research (December 1959). 

34. H. R. CHAPLIN, A method for numerical calculation of slipstream contraction of a 
shrouded impulse disk in the static case with application to o~her axisymmctric potential 
flow problems, David Taylor Model Basin Report No. 1857 (June 1964). 

35. T. THEODORSEN, Theory of wing sections of arbitrary shape, NACA Report No. 411 
(1932). 

36. T. A. HARRIS and J. G. LowRY, Pressure distribution over an NACA 23012 airfoil 
with a fixed slot and a slotted flap, NACA Report No. 732 (1942). 

37. J. H. PRESTON and N. E. SwrEau~G, The experimental determination of the boundary 
layer wake characteristics of a simple Joukowski airfoil with particular reference to the 
trailing edge region, Aeronautical Research Council R and M, No. 1998 (March 1943). 

38. B. R. PRRKIN, B. PERRY and T. Y. Wu, Pressure distribution on a hydrofoil running 
near the water surface, Journal of Applied Physics, 27 No. 3, 232 (March 1956). 

39. J. L. HERRm, J. C. EMERY and J. R. ERwm, Systematic two-dimensional cascade tests 
of NACA 65-series compressor blades at low speeds, NACA TN 3916 (1957). 

40. C. W. MA'I'rHEWS, A comparison of the experimental subsonic pressure distributions 
about several bodies of revolution with pressure distributions computed by means of 
linearized theory, NACA RM L9F28 (September 1949). 

41. A. D. YOUNG and P. R. OWEN, Simplified theory for streamline bodies of revolution 
and its application to the development of high-speed low-drag shapes, Aeronautical 
Research Council R and M, No. 2071 (July 1943). 

42. M. S. C^HN, Shrouded propeller design analysis, Douglas Aircraft Company Engineer- 
ing Paper No. 1394 (April 1962). 

43. R. A. TAYLOR, Pressure distributions at transonic speeds for bumpy and indented 
midsections of a parabolic-arc body, NASA Memo 1-22-59A. 

44. W. E. JOHNSON, Experimental investigation and correlation with theory of the surface 
pressure distribution on several sharp and blunted cones for incompressible flow, 
Master's Thesis, Department of Aeronautics and Astronautics, University of Washing- 
ton (1963). 

45. M. R. NiChOLS and A. L. KE~TH, Jm, Investigation of a systematic group of NACA 
l-series cowlings with and without spinners, NA.CA Report 950(1949). 

46. J. M. SWmART and C. F. WmTCOMB, Pressure distributions on three bodies of revolu- 
tion to determine the effect of Reynolds number up to and including the transonic spi~ed 
range, NACA RM L53HO4 (October 1953). 

47. D. M. Nrt.soN, Hydrodynamic coefficient calculation using Douglas potential flow 
computer program, NAVWEPS Report No. 8799, NOTS TP 3905 (October 1965). 

48. D. H. PECKHAM, Low-speed wind tunnel tests on a series of uncambered slender 
pointed wings with sharp edges, Aeronat, tical Research Council R and M, No. 3186 
(1961). 

49. R. D. BOURKE, A theoretical and experimental study of a superconducting magnetically- 
supported spinning body, Stanford University, Department of Aeronautics and Astro- 
nautics, SUDAER No. 189 (May 1964). 

50. M. A. JASWON and A. R. PONTER, An integral equation solution of the torsion problem, 
Proceedings of the Royal Society, Series A, 273, No. 1353, 237 (May 1963). 

51. D. R. CRuisr, A numerical method for the determination of an electric field about a 
complicated boundary, Journal of Applied Physics, 34, No. 12, 3477 (December 1963 ). 

52. R. P. BANAUGH and W. GOLDSMrrH, Diffraction of steady acoustic waves by surfaces of 
arbitrary shape, Journal of the Acoustical Society of America, 35, No. 10, 1590 (October 
1963). 

53. G. CitER'rOCK, Sound radiation from vibrating surfaces, Journal of the Acoustical 
Society of America, 36, No. 7. 1305 (July 1964). 

54. L. H. CHEN and D. G. SCHV,'EIKERa', Sound radiation from an arbitrary body, Journal 
of the Acoustical Society of America. 35, No. I0, 1626 (October 1963). 


