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Abstract

The model proposed here is derived from an alternative theory of multicomponent fluid diffusion by Kerkhof [1] based on an expansion of the legacy theory of
Hirschfelder, Curtiss and Bird [2]. In contrast with the previous lattice Boltzmann models, the diffusion force is directly added to the momentum
equation through a Guo’s forcing scheme [3]. In addition the corresponding transport coefficients, viscosity and diffusion coefficients for each species, are
computed according to the molecular proprieties of the components. Then some numerical simulations are presented for validation purposes.

A new multicomponent lattice Boltzmann model

The σ superscript denotes different fluid components by specifying
σ = 1, 2, ...,N with N being the total number of the components. For
simplicity, the components are supposed to have the same molar weight.
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And Sσα is the source term from Guo forcing scheme where Fσ is the total
force acting on the σth component:
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As a multi-fluid approach of the mixture, the density and the momentum of
each fluid components are defined as:
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Fσ is the sum of diffusion forces and other external forces:
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A Chapman and Enskog expansion procedure gives the following macroscopic
equations for low mach number and isothermal flow:
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Transport coefficients
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Where kB is the Boltzmann constant, T the temperature, mσ the mass of the component
σ, xσ the mole fraction and Ω-integrals have the same definition as in [2] and depend
on the temperature and the molecular proprieties based on the Lennard-Jones potential.
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Figure 1: Viscosity of a Ar - He mixture
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Figure 2: Viscosity of a CO2 - C3H8 mixture

Limit expression: decay of a sinusoidal density wave

For binary equimolar mixture with negligible convection, the flow dynamics
are essentially governed by diffusion and equivalent equations reduce to a
diffusion equation. Measured diffusion coefficients is then compared to
the theoretical values [4].

ρσ(x , t) = ρmean + δ sin (kx) exp
(
−k2Dt

)
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Figure 3: Relative error of the diffusion coefficient

Perspectives

I Different molar mass
I Three and more species

I More validation test-cases
I Chemical reactions: source/sink

terms and temperature

Simulation of the viscous fingering instability

Viscous fingering instability occurs when a less viscous fluid displaces a more viscous one.

Macro-scale simulation:
∆x � pore length
I Partial bounce-back [5] :

f collα = (1−ns)×Coll +ns× fopp

I nσs [i , j ] = νσ/ (2K + νσ)
where K is the permeability of
the medium. Figure 4: Macro-scale

Pore-scale simulation:
∆x < pore length
I Diameter of the pores: 16 Lu
I Standard bounce-back with

MRT formulation [6]
I Emergence of asymmetric

patterns in the mixing zone
Figure 5: Pore-scale
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