

Grid refinement in LBM based on continuous distribution functions

Denis Ricot¹ Simon Marié^{1,2} Pierre Sagaut²

¹Renault - Research, Material and Advanced Engineering Department ²d'Alembert Institute, Université Paris VI

5th ICMMES - 16-20 june 2008

D. Ricot, S. Marié, P. Sagaut Grid refinement in LBM based on continuous distribution fur

◆母 ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ の Q @

Grid refinement problem

- For simulating complex engineering flows, mesh refinement technique is necessary
- LB distribution functions *g*_α are not conserved through a refinement interface [*Filippova & Hanel*, 1998]
- Spatial and time interpolation methods can not be used directly on the distribution functions to evaluate the unknown data

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Grid refinement schemes

- Vertex centered approach
 - With ([Yu et al., 2002][Dupuis & Chopard, 2003]) OUT Without rescaling ([Lin & Lai, 2000])
 - rescaling and interpolations applied on the post-collision distribution functions ([Yu et al., 2002][Filippova & Hanel, 1998])
 - spatial interpolation performed before time interpolation [Yu et al., 2002][Dupuis & Chopard, 2003]
- Volumetric approach (cell centered) [Rohde, 2004][Chen et al., 2005 (PowerFLOW)]
 - Explode $(c \rightarrow f)$ and coalesce $(f \rightarrow c)$ distribution functions : mass conservative scheme
 - No rescaling of distribution functions

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Presentation outline

Continuous distribution functions ?

Grid refinement problem DVBE and LBE Numerical verification

Grid refinement algorithm

Rescaling procedure Overlapping nodes Algorithm description

Validations

Grid parameters Pulse propagation in uniform flow Convected vortex

・ロト ・回ト ・ヨト ・ヨト

Grid refinement problem DVBE and LBE Numerical verification

Grid refinement problem

- After one standard LB timestep, some distribution functions are missing
- Distribution functions are *known* to be discontinuous through an interface between meshes with different grid size : g^c_α (●, ∘, t) ≠ g^f_α (●, ∘, t)

・ロト ・回 ト ・ヨト ・ヨト

臣

Grid refinement problem DVBE and LBE Numerical verification

Base ideas of Filippova & Hanel (1998)

- Macroscopic properties of the fluid must be conserved (v, cs)
 - $\delta \mathbf{x}^c / \delta t^c = \delta \mathbf{x}^f / \delta t^f$
 - $\tau_g^c = \frac{1}{2}\tau_g^f + \frac{1}{4}$ (the relaxation time is not continuous)
- Macroscopic variables of the flow must be conserved (ρ, u)

•
$$g^{eq,c}_{\alpha} = g^{eq,f}_{\alpha}$$

The shear stress must be continuous

•
$$g_{\alpha}^{neq,c} = m \frac{\tau_g^c}{\tau_g^f} g_{\alpha}^{neq,f}$$
 ($m = \frac{\delta x^c}{\delta x^f} = 2$)

▲□▶ ▲圖▶ ▲ 圖▶ ▲ 圖▶ → 圖 - の久()

Grid refinement problem DVBE and LBE Numerical verification

Why the distribution functions of LBM are not continuous ?

Boltzmann equation

$$\frac{\partial f}{\partial t} + c_i \frac{\partial f}{\partial x_i} = -\frac{f - f^{eq}}{\epsilon \lambda} \tag{BE}$$

 Quadrature formulae to calculate moments of distribution functions using a discrete velocity set

$$\frac{\partial f_{\alpha}}{\partial t} + c_{\alpha,i} \frac{\partial f_{\alpha}}{\partial x_{i}} = -\frac{1}{\tau} \left(f_{\alpha} - f_{\alpha}^{eq} \right)$$
(DVBE)

By definition the distribution functions of DVBE f_α are continuous in space and time (and also ν = τθ₀, c_s = √θ₀, ρ = ∑ f_α, ρ**u** = ∑ c_αf_α)

Continuous distribution functions ?	Grid refinement problem
Grid refinement algorithm	DVBE and LBE
Validations	Numerical verification

- Integrate DVBE along the characteristic \mathbf{c}_{α} for a time interval δt
- The integral of the BGK collision operator is approximated by the trapezium rule :

$$f_{\alpha} \left(\mathbf{x} + \mathbf{c}_{\alpha} \delta t, t + \delta t \right) - f_{\alpha} \left(\mathbf{x}, t \right) = -\frac{\delta t}{2\tau} \left\{ f_{\alpha} \left(\mathbf{x} + \mathbf{c}_{\alpha} \delta t, t + \delta t \right) - f_{\alpha}^{eq} \left(\mathbf{x} + \mathbf{c}_{\alpha} \delta t, t + \delta t \right) + f_{\alpha} \left(\mathbf{x}, t \right) - f_{\alpha}^{eq} \left(\mathbf{x}, t \right) \right\} + O\left(\delta t^{3}\right)$$

• Change of variable ([He et al., 1998][Dellar, 2001])

$$g_{\alpha}\left(\mathbf{x},t\right) = f_{\alpha}\left(\mathbf{x},t\right) + \frac{\delta t}{2\tau}\left(f_{\alpha}\left(\mathbf{x},t\right) - f_{\alpha}^{eq}\left(\mathbf{x},t\right)\right)$$
(1)

Final Lattice Boltzmann Equation

$$g_{\alpha}(\mathbf{x}+\mathbf{c}_{\alpha}\delta t,t+\delta t) = \left(1-\frac{\delta t}{\tau_g}\right)g_{\alpha}(\mathbf{x},t) + \frac{\delta t}{\tau_g}f_{\alpha}^{eq}(\mathbf{x},t)$$
(2)

with $\tau_g = \tau + \delta t/2$.

Grid refinement problem DVBE and LBE Numerical verification

Numerical verification of the link between $f\alpha$ and g_{α}

- LBE and DVBE computations have been performed on the same uniform grid, for the same flow problems and fluid parameters
- LB model : standard D2Q9, BGK collision operator, equilibrium function truncated at second order
- DVBE model : D2Q9 velocity model, BGK collision operator, equilibrium function truncated at second order
 - 6th-order central finite difference scheme for space derivatives
 - 5th-order Runge-Kutta scheme for time integration
- Fluid is air, $\tau/\delta t = 0.93$, same δt and δx for LBE and DVBE
- For two simple flows, comparison of f_α, g_α and d_α = f_α + δt/(2τ) (f_α − f^{eq}_α)

Grid refinement problem DVBE and LBE Numerical verification

Reference cases

Acoustic pressure pulse in an uniform flow

$$\begin{cases} \rho = 1 + a_P \exp\left[-\frac{\ln 2}{b_P} \left(\left(x_1 - x_1^0\right)^2 + \left(x_2 - x_2^0\right)^2\right)\right] \\ u_1 = U_0 \\ u_2 = 0 \end{cases}$$

with
$$a_P = 0.03$$
 and $b_P = 5$

Convected vortex

$$\begin{cases} \rho = 1\\ u_1 = U_0 + a_T \ U_0 \left(x_2 - x_2^0 \right) \exp \left[-\frac{\ln 2}{b_T} \left(\left(x_1 - x_1^0 \right)^2 + \left(x_2 - x_2^0 \right)^2 \right) \right] \\ u_2 = -a_T \ U_0 \left(x_1 - x_1^0 \right) \exp \left[-\frac{\ln 2}{b_T} \left(\left(x_1 - x_1^0 \right)^2 + \left(x_2 - x_2^0 \right)^2 \right) \right] \end{cases}$$

with $a_T = 0.5$ et $b_T = 25$

Grid refinement problem DVBE and LBE Numerical verification

Comparison of the macroscopic variables

• The simulated results are exactly the same in term of macroscopic variables $\to g_{\alpha}^{eq} = f_{\alpha}^{eq}$

ヘロト 人間 とくほとくほとう

臣

Grid refinement problem DVBE and LBE Numerical verification

Distribution functions at a given point as a function of time

This numerical test confirms that g_α = f_α + δt/2τ (f_α − f^{eq}_α)

・ロト ・ 回 ト ・ ヨ ト ・ ヨ ト … ヨ

Continuous distribution functions ?	Rescaling procedure
Grid refinement algorithm	Overlapping nodes
Validations	Algorithm description

Conversion g_α ↔ f_α for a given x and t

$$g_{lpha} = f_{lpha} + rac{\delta t}{2 au} \left(f_{lpha} - f_{lpha}^{eq}
ight) <=> f_{lpha} = rac{2 au}{2 au + \delta t} \left(g_{lpha} + rac{\delta t}{2 au} f_{lpha}^{eq}
ight)$$

• By definition f_{α} , τ , $\rho = \sum f_{\alpha}$, $\rho \mathbf{u} = \sum \mathbf{c}_{\alpha} f_{\alpha} (\rightarrow f_{\alpha}^{eq})$ are continuous

$$\begin{cases} f_{\alpha}^{c} = \frac{2\tau}{2\tau + \delta t^{c}} \left(g_{\alpha}^{c} + \frac{\delta t^{c}}{2\tau} f_{\alpha}^{eq} \right) \\ f_{\alpha}^{f} = \frac{2\tau}{2\tau + \delta t^{f}} \left(g_{\alpha}^{f} + \frac{\delta t^{f}}{2\tau} f_{\alpha}^{eq} \right) \\ f_{\alpha}^{f} = f_{\alpha}^{c} \\ \tau = \tau_{g}^{f} - \frac{\delta t^{f}}{2} = \tau_{g}^{c} - \frac{\delta t^{c}}{2} \\ m = 2 \end{cases} \qquad g_{\alpha}^{f} = \frac{1}{2\tilde{\tau}_{g}^{f}} \left(\left(2\tilde{\tau}_{g}^{f} + 1 \right) g_{\alpha}^{f} - f_{\alpha}^{eq} \right) \right)$$

• Remark: these expressions immediately imply that $g^{neq,c}_{\alpha}=2rac{ ilde{\tau}^{r}_{g}}{ ilde{ au}^{neq,f}}g^{neq,f}_{lpha}$

▲□▶ ▲圖▶ ▲ 圖▶ ▲ 圖▶ → 圖 - の久()

- Continuous distribution functions ? Grid refinement algorithm Validations Validations
- First approach (implemented with success in our 3D LB code (L-BEAM))
 - Conversion $g_{\alpha}^{c} \leftrightarrow f_{\alpha}$ for needed interface points
 - Spatial and temporal interpolations on f_{α}
 - Conversion $f_{\alpha} \leftrightarrow g_{\alpha}^{f}$
- Second approach (preferred in this work)
 - Conversion $g^c_{\alpha} \leftrightarrow g^f_{\alpha}$ for needed interface points
 - Spatial and temporal interpolations on g^f_α
- In both cases
 - Conversion step needs the equilibrium functions to be known

▲母 ▶ ▲ 臣 ▶ ▲ 臣 ▶ □ 臣 □ - のへで

Continuous distribution functions ?	Rescaling procedure
Grid refinement algorithm	Overlapping nodes
Validations	Algorithm description

Fine grid points
 o must also be calculated as coarse grid points

• Conversion $g^{f}_{lpha_{out}}\left(\diamond,t
ight)
ightarrow g^{c}_{lpha_{out}}\left(\diamond,t
ight)$

▲□▶▲□▶▲≣▶▲≣▶ ≣ のQで

Continuous distribution functions ?	Rescaling procedure
Grid refinement algorithm	Overlapping nodes
Validations	Algorithm description

• Conversion $g_{\alpha_{in}}^c(\bullet, t+2\delta t^f) \rightarrow g_{\alpha_{in}}^f(\bullet, t+2\delta t^f)$ can be done because macroscopic variables can be now calculated at points •

▲□▶ ▲圖▶ ▲ 圖▶ ▲ 圖▶ → 圖 - の久()

Continuous distribution functions ? Rescaling procedure Grid refinement algorithm Validations Algorithm description

• Timestep *t* : all functions g^{c}_{α} and g^{f}_{α} are known everywhere

▲□▶▲□▶▲≣▶▲≣▶ ≣ のQで

Continuous distribution functions ? Rescaling procedure Grid refinement algorithm Validations Algorithm description

Timestep t : all functions g^c_{\alpha} and g^f_{\alpha} are known everywhere

• Stage 1 : convert $g^{f}_{\alpha_{out}}(\diamond, t) \rightarrow g^{c}_{\alpha_{out}}(\diamond, t)$

▲□▶▲□▶▲≣▶▲≣▶ ≣ のQで

Continuous distribution functions ? Rescaling procedure Grid refinement algorithm Overlapping nodes Validations Algorithm description

- Timestep t : all functions g^c_α and g^f_α are known everywhere
- Stage 1 : convert $g^{f}_{\alpha_{out}}(\diamond, t) \rightarrow g^{c}_{\alpha_{out}}(\diamond, t)$
- Stage 2 : collide and propagate all points in the fine and coarse regions (including points ◊)

▲□▶ ▲圖▶ ▲ 圖▶ ▲ 圖▶ → 圖 - の久()

Continuous distribution functions ? Rescaling procedure Grid refinement algorithm Overlapping nodes Validations Algorithm description

- Timestep t : all functions g^c_α and g^f_α are known everywhere
- Stage 1 : convert $g^{f}_{\alpha_{out}}(\diamond, t) \rightarrow g^{c}_{\alpha_{out}}(\diamond, t)$
- Stage 2 : collide and propagate all points in the fine and coarse regions (including points \$\$)

• Stage 3 : convert

$$g^{c}_{\alpha_{in}}\left(\bullet, t+2\delta t^{f}\right) \rightarrow g^{f}_{\alpha_{in}}\left(\bullet, t+2\delta t^{f}\right)$$

イロト イヨト イヨト イヨト

3

Rescaling procedure Overlapping nodes Algorithm description

- Timestep *t* : all functions g^c_{α} and g^f_{α} are known everywhere
- Stage 1 : convert $g^{f}_{\alpha_{out}}(\diamond, t) \rightarrow g^{c}_{\alpha_{out}}(\diamond, t)$
- Stage 2 : collide and propagate all points in the fine and coarse regions (including points ◊)

• Stage 3 : convert

$$g^{c}_{\alpha_{in}}\left(ullet, t+2\delta t^{f}\right) \rightarrow g^{f}_{\alpha_{in}}\left(ullet, t+2\delta t^{f}\right)$$

• Stage 4 : time interpolation of
$$g^{f}_{\alpha_{in}}\left(ullet,t+\delta t^{f}\right)$$

Injection scheme : $g_{\alpha_{in}}^{f} \left(\bullet, t + \delta t^{i} \right) = g_{\alpha_{in}}^{f} \left(\bullet, t + 2\delta t^{f} \right)$ Linear interpolation using $g_{\alpha_{in}}^{f} \left(\bullet, t + 2\delta t^{i} \right)$ and $g_{\alpha_{in}}^{f} \left(\bullet, t \right)$ (that

▲□▶ ▲圖▶ ▲ 圖▶ ▲ 圖▶ → 圖 - の久()

must be stored)

Rescaling procedure Overlapping nodes Algorithm description

- Timestep *t* : all functions g^c_{α} and g^f_{α} are known everywhere
- Stage 1 : convert $g^{f}_{\alpha_{out}}(\diamond, t) \rightarrow g^{c}_{\alpha_{out}}(\diamond, t)$
- Stage 2 : collide and propagate all points in the fine and coarse regions (including points ◊)
- Stage 3 : convert $g^{c}_{\alpha_{in}}\left(ullet, t+2\delta t^{f}\right) \rightarrow g^{f}_{\alpha_{in}}\left(ullet, t+2\delta t^{f}\right)$
- Stage 4 : time interpolation of $g^{f}_{\alpha_{in}}\left(ullet,t+\delta t^{f}\right)$

 $\begin{array}{l} \blacktriangleright \quad \text{Injection scheme :} \\ g^f_{\alpha_{in}}\left(\bullet,t+\delta t^f\right) = g^f_{\alpha_{in}}\left(\bullet,t+2\delta t^f\right) \\ \blacktriangleright \quad \text{Linear interpolation using} \\ g^f_{\alpha_{in}}\left(\bullet,t+2\delta t^f\right) \text{ and } g^f_{\alpha_{in}}\left(\bullet,t\right) \text{ (that must be stored)} \end{array}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

• Stage 5 : spatial interpolation of $g^{f}_{\alpha_{in}}\left(\circ,t+\delta t^{f}\right)$ using $g^{f}_{\alpha_{in}}\left(\bullet-1,t+\delta t^{f}\right)$ and $g^{f}_{\alpha_{in}}\left(\bullet+1,t+\delta t^{f}\right)$

Rescaling procedure Overlapping nodes Algorithm description

- Timestep *t* : all functions g^c_{α} and g^f_{α} are known everywhere
- Stage 1 : convert $g^f_{\alpha_{out}}(\diamond, t) \to g^c_{\alpha_{out}}(\diamond, t)$
- Stage 2 : collide and propagate all points in the fine and coarse regions (including points ◊)
- Stage 3 : convert $g^{c}_{\alpha_{in}}\left(ullet, t+2\delta t^{f}\right) \rightarrow g^{f}_{\alpha_{in}}\left(ullet, t+2\delta t^{f}\right)$
- Stage 4 : time interpolation of $g^{f}_{\alpha_{in}}\left(ullet,t+\delta t^{f}\right)$

- $\begin{array}{l} \blacktriangleright \quad \text{Injection scheme :} \\ g^f_{\alpha_{in}}\left(\bullet,t+\delta t^f\right) = g^f_{\alpha_{in}}\left(\bullet,t+2\delta t^f\right) \\ \blacktriangleright \quad \text{Linear interpolation using} \\ g^f_{\alpha_{in}}\left(\bullet,t+2\delta t^f\right) \text{ and } g^f_{\alpha_{in}}\left(\bullet,t\right) \text{ (that must be stored)} \end{array}$
- Stage 5 : spatial interpolation of $g^{f}_{\alpha_{in}}\left(\circ,t+\delta t^{f}\right)$ using $g^{f}_{\alpha_{in}}\left(\bullet-1,t+\delta t^{f}\right)$ and $g^{f}_{\alpha_{in}}\left(\bullet+1,t+\delta t^{f}\right)$
- Timestep $t + \delta t^{f}$: all functions g_{α}^{f} are known in the fine grid region

Rescaling procedure Overlapping nodes Algorithm description

- Timestep *t* : all functions g^c_{α} and g^f_{α} are known everywhere
- Stage 1 : convert $g^{f}_{\alpha_{out}}(\diamond, t) \rightarrow g^{c}_{\alpha_{out}}(\diamond, t)$
- Stage 2 : collide and propagate all points in the fine and coarse regions (including points ◊)
- Stage 3 : convert $g^{c}_{\alpha_{in}}\left(\bullet, t+2\delta t^{f}\right) \rightarrow g^{f}_{\alpha_{in}}\left(\bullet, t+2\delta t^{f}\right)$
- Stage 4 : time interpolation of $g^{f}_{\alpha_{in}}\left(ullet,t+\delta t^{f}\right)$

- $\begin{array}{l} \blacktriangleright \quad \text{Injection scheme :} \\ g^f_{\alpha_{in}}\left(\bullet,t+\delta t^f\right) = g^f_{\alpha_{in}}\left(\bullet,t+2\delta t^f\right) \\ \blacktriangleright \quad \text{Linear interpolation using} \\ g^f_{\alpha_{in}}\left(\bullet,t+2\delta t^f\right) \text{ and } g^f_{\alpha_{in}}\left(\bullet,t\right) \text{ (that must be stored)} \end{array}$
- Stage 5 : spatial interpolation of $g^{f}_{\alpha_{in}}\left(\circ,t+\delta t^{f}\right)$ using $g^{f}_{\alpha_{in}}\left(\bullet-1,t+\delta t^{f}\right)$ and $g^{f}_{\alpha_{in}}\left(\bullet+1,t+\delta t^{f}\right)$
- Timestep $t + \delta t^{f}$: all functions g_{α}^{f} are known in the fine grid region
- Stage 6 : collide and propagate all points in the fine region

Rescaling procedure Overlapping nodes Algorithm description

- Timestep t : all functions g^c_{α} and g^f_{α} are known everywhere
- Stage 1 : convert $g^{f}_{\alpha_{out}}(\diamond, t) \rightarrow g^{c}_{\alpha_{out}}(\diamond, t)$
- Stage 2 : collide and propagate all points in the fine and coarse regions (including points ◊)
- Stage 3 : convert $g^{c}_{\alpha_{in}}\left(\bullet, t+2\delta t^{f}\right) \rightarrow g^{f}_{\alpha_{in}}\left(\bullet, t+2\delta t^{f}\right)$
- Stage 4 : time interpolation of $g^{f}_{\alpha_{in}}\left(ullet,t+\delta t^{f}\right)$

- $\begin{array}{l} \blacktriangleright \quad \text{Injection scheme :} \\ g^f_{\alpha \ in} \left(\bullet, t + \delta t^f \right) = g^f_{\alpha \ in} \left(\bullet, t + 2\delta t^f \right) \\ \blacktriangleright \quad \text{Linear interpolation using} \\ g^f_{\alpha \ in} \left(\bullet, t + 2\delta t^f \right) \text{ and } g^f_{\alpha \ in} \left(\bullet, \mathfrak{h} \right) \text{ (that must be stored)} \end{array}$
- Stage 5 : spatial interpolation of $g^{f}_{\alpha_{in}}\left(\circ,t+\delta t^{f}\right)$ using $g^{f}_{\alpha_{in}}\left(\bullet-1,t+\delta t^{f}\right)$ and $g^{f}_{\alpha_{in}}\left(\bullet+1,t+\delta t^{f}\right)$
- Timestep $t + \delta t^{f}$: all functions g^{f}_{α} are known in the fine grid region
- Stage 6 : collide and propagate all points in the fine region

• Stage 7 : recover
$$g^{f}_{\alpha_{in}}\left(\bullet, t+2\delta t^{f}\right)$$
 from $g^{c}_{\alpha_{in}}\left(\bullet, t+2\delta t^{f}\right)$

Rescaling procedure Overlapping nodes Algorithm description

- Timestep t : all functions g^c_{α} and g^f_{α} are known everywhere
- Stage 1 : convert $g^{f}_{\alpha_{out}}(\diamond, t) \rightarrow g^{c}_{\alpha_{out}}(\diamond, t)$
- Stage 2 : collide and propagate all points in the fine and coarse regions (including points ◊)
- Stage 3 : convert $g^{c}_{\alpha_{in}}\left(ullet, t+2\delta t^{f}\right) \rightarrow g^{f}_{\alpha_{in}}\left(ullet, t+2\delta t^{f}\right)$
- Stage 4 : time interpolation of $g^{f}_{\alpha_{in}}\left(ullet,t+\delta t^{f}\right)$

- $\begin{array}{l} \blacktriangleright \quad \text{Injection scheme :} \\ g^f_{\alpha in}\left(\bullet,t+\delta t^f\right) = g^f_{\alpha in}\left(\bullet,t+2\delta t^f\right) \\ \blacktriangleright \quad \text{Linear interpolation using} \\ g^f_{\alpha in}\left(\bullet,t+2\delta t^f\right) \text{ and } g^f_{\alpha in}\left(\bullet, \mathfrak{h}\right) \text{ (that must be stored)} \end{array}$
- Stage 5 : spatial interpolation of $g^{f}_{\alpha_{in}}\left(\circ,t+\delta t^{f}\right)$ using $g^{f}_{\alpha_{in}}\left(\bullet-1,t+\delta t^{f}\right)$ and $g^{f}_{\alpha_{in}}\left(\bullet+1,t+\delta t^{f}\right)$
- Timestep $t + \delta t^{f}$: all functions g_{α}^{f} are known in the fine grid region
- Stage 6 : collide and propagate all points in the fine region

- Stage 7 : recover $g^{f}_{\alpha_{in}}\left(\bullet, t+2\delta t^{f}\right)$ from $g^{c}_{\alpha_{in}}\left(\bullet, t+2\delta t^{f}\right)$
- Stage 8 : spatial interpolation of $g^{f}_{\alpha_{in}}\left(\circ,t+2\delta t^{f}\right)$

Rescaling procedure Overlapping nodes Algorithm description

- Timestep *t* : all functions g^c_{α} and g^f_{α} are known everywhere
- Stage 1 : convert $g^{f}_{\alpha_{out}}(\diamond, t) \rightarrow g^{c}_{\alpha_{out}}(\diamond, t)$
- Stage 2 : collide and propagate all points in the fine and coarse regions (including points ◊)
- Stage 3 : convert $g^{c}_{\alpha_{in}}\left(\bullet, t+2\delta t^{f}\right) \rightarrow g^{f}_{\alpha_{in}}\left(\bullet, t+2\delta t^{f}\right)$
- Stage 4 : time interpolation of $g^{f}_{\alpha_{in}}\left(ullet,t+\delta t^{f}\right)$

- $\begin{array}{l} \blacktriangleright \quad \text{Injection scheme :} \\ g^f_{\alpha in}\left(\bullet,t+\delta t^f\right) = g^f_{\alpha in}\left(\bullet,t+2\delta t^f\right) \\ \blacktriangleright \quad \text{Linear interpolation using} \\ g^f_{\alpha in}\left(\bullet,t+2\delta t^f\right) \text{ and } g^f_{\alpha in}\left(\bullet, \mathfrak{h}\right) \text{ (that must be stored)} \end{array}$
- Stage 5 : spatial interpolation of $g^{f}_{\alpha_{in}}\left(\circ,t+\delta t^{f}\right)$ using $g^{f}_{\alpha_{in}}\left(\bullet-1,t+\delta t^{f}\right)$ and $g^{f}_{\alpha_{in}}\left(\bullet+1,t+\delta t^{f}\right)$
- Timestep $t + \delta t^{f}$: all functions g_{α}^{f} are known in the fine grid region
- Stage 6 : collide and propagate all points in the fine region
- Stage 7 : recover $g^{f}_{\alpha_{in}}\left(\bullet, t+2\delta t^{f}\right)$ from $g^{c}_{\alpha_{in}}\left(\bullet, t+2\delta t^{f}\right)$
- Stage 8 : spatial interpolation of $g^{f}_{\alpha_{in}}\left(\circ,t+2\delta t^{f}\right)$
- Timestep t+2δt^f: all functions g^c_α and g^f_α are known everywhere

- Coarse grid : 120x80, fine grid : 60×80
- Acoustic pulse or vortex is initialized outside or inside the fine grid
- $M = 0.2, \nu = 1.5 \times 10^{-5} m^2/s, c_s = 340 m/s, \delta x^f = 10^{-2} m$
- All computations are also done with a uniform coarse grid (reference)

D. Ricot, S. Marié, P. Sagaut Grid refinement in LBM based on continuous distribution fur

Grid parameters Pulse propagation in uniform flow Convected vortex

Iso-contours of the density fluctuation

- Small pressure reflexion occurs at the grid interface. The error is reduced when linear time interpolation is used.
- There is an analytical solution for the propagation of the pulse in uniform flow → precise error quantification is possible

Grid parameters Pulse propagation in uniform flow Convected vortex

Simulation with the uniform grid

イロト イヨト イヨト イヨト

Grid parameters Pulse propagation in uniform flow Convected vortex

Two-grid simulation with injection (no time interpolation)

ヨトメヨト

Grid parameters Pulse propagation in uniform flow Convected vortex

Two-grid simulation with linear interpolation in time

★ E ► ★ E ►

Grid parameters Pulse propagation in uniform flow Convected vortex

Convergence rate

• Parameter *b_p* gives the initial width of the pressure pulse, i.e. the spatial resolution

) slope -3.5

(🗖 🗖 🗖) Uniform grid

(\bigtriangleup \bigtriangleup \bigtriangleup) Two-grid simulation without time interpolation (injection)

($\circ \ \circ \ \circ \ \circ$) Two-grid simulation with linear interpolation in time

< 注 → < 注

Grid parameters Pulse propagation in uniform flow Convected vortex

Initial pulse in the fine grid region

イロト イヨト イヨト イヨト

Grid parameters Pulse propagation in uniform flow Convected vortex

Convected vortex (linear interpolation in time)

 Fine to coarse grid convection : spurious vorticity appears inside the fine region due to non-physical reflexion at the grid interface

・ロト ・回ト ・ヨト ・ヨト

Conclusion

- New theoretical insight in the link between coarse and fine distribution functions
 - final rescaling expressions are fully equivalent to the previous approaches
 - this new theoretical approach can be useful for other LB models (other collision operator such as MRT models)
- The proposed grid refinement algorithm minimize the unknown functions that must be approximated with interpolations
 - use of overlapping coarse nodes
 - interpolations are done on the distribution functions
 - time interpolation is done before spatial interpolation
- Accuracy of the grid refinement scheme can be improved using higher order interpolation schemes

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・ ヨ