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von Neumann stability analysis
Selective damping filters

Validations

Computational Aeroacoustics (CAA) and LBM

• CAA = high Reynolds number flow simulation + direct simulation of
acoustic fields

• LBM has enough accuracy to simulate acoustic phenomena ([Buick et
al. 1998, Ricot et al. 2002, Marié et al. 2007])

• LBM is a low dissipative scheme → unstable in high Reynolds flows
(low viscosity)
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Validations

Stability issue in LBM

• Numerical instability sources : poor initial and boundary conditions,
under-resolved shear flow, interpolation errors in multi-resolution
simulation...

• Proposed solutions

� Artifical viscosity (global or local lower bound of the relaxation
time [Li et al., 2004, PowerFLOW])

� Dissipative lattice Boltzmann scheme (fractional propagation
[Qian, 1997])

� Multiple Relaxation Time model [Lallemand, 2000]...
� ... or increase of the bulk viscosity [Dellar, 2001]
� Explicit filter to damp the high wavenumber oscillations [Skordos,

1995]
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Validations

Presentation outline

von Neumann stability analysis
Linearization and Fourier decomposition
Dispersion, dissipation and stability

Selective damping filters
Fully filtered lattice Boltzmann equation
Filter applied to macroscopic variables
Filter applied to collision operator

Validations
Dissipation of acoustic waves
Under-resolved flow simulation
Radiated noise by unsteady flow over cavity
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von Neumann stability analysis
Selective damping filters

Validations

Linearization and Fourier decomposition
Dispersion, dissipation and stability

• Linearization around a uniform mean flow

gα (x + cα, t + 1) = gα (x, t) − 1
τ
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• Fourier decomposition of the fluctuating distribution functions

g′
α (x, t) = hαei(k.x−ωt)

• Eigenvalue / eigenvector problem

Mh = e−iωh
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Validations

Linearization and Fourier decomposition
Dispersion, dissipation and stability

• Matrix for the LBE-BGK model

MBGK = A−1[I − 1
τ

NBGK]

• Matrix for the LBE-MRT model

MMRT = A−1[I − P−1SPNBGK] with m = Pg , S = diag[
1
τ1

, ...,
1
τN

]

• Link between eigenvalues and macroscopic transport coefficients


Re[ω±(k)] = k (±cs (k) + U0(k))

Im[ω± (k)] = −k2 `
2
3 ν (k) + 1

2η (k)
´


Re[ωT (k)] = kU0 (k)
Im[ωT (k)] = −k2ν (k)
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Validations

Linearization and Fourier decomposition
Dispersion, dissipation and stability

• Unstable simulation if Im[ω (k)] > 0

• Stability condition depends on k, U 0, τ
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D2Q9-BGK : Isocontours of Im[ω (k)] > 0 (unstable regions) in the
wavenumber space (kx , ky ) for U0 = Ux = 0.2 and 1/τ = 1.99.
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Validations

Linearization and Fourier decomposition
Dispersion, dissipation and stability

• D2Q9-BGK : dispersion and dissipation of the three physical modes for
∠(k, x) = θ1

• Dispersion error → mode coincidence for k = k1

• "Energy transfer" between the positive acoustic mode and the shear
mode
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Validations

Linearization and Fourier decomposition
Dispersion, dissipation and stability

• D2Q9-MRT with standard relaxation times ([Lallemand & Luo, 2000]) :
"bulk viscosity" relaxation time 1/τ2 = 1.64, "shear viscosity" relaxation
times 1/τ8 = 1/τ9 = 1.99

• The dispersion error is the same as D2Q9-BGK

• Mode coincidence occurs but Im[ω (k)] remains negative
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Validations

Linearization and Fourier decomposition
Dispersion, dissipation and stability

• D2Q9-MRT with the same bulk viscosity as BGK model (1/τ2 = 1.99)

• In this case the MRT model is unstable

• Other undamped interactions between acoustic modes and kinetic
modes occur around k ≈ π/2
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Selective damping filters

Validations

Linearization and Fourier decomposition
Dispersion, dissipation and stability

Conclusion on the stability analysis

• Numerical instabilities are due to "energy transfer" between acoustic
modes and and the other modes

• Standard MRT model is stable but high bulk viscosity must be used

• Standard BGK model : mode interactions occur in high wavenumber
domain

→ selective wavenumber filter to damp high wavenumber only
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Validations

Fully filtered lattice Boltzmann equation
Filter applied to macroscopic variables
Filter applied to collision operator

• Genereral expression of the filtering operator 〈〉 for a given variable v :

〈v (x)〉 = v (x) − σ
DX

j=1

NX
n=−N

dnv (x + nxj)

D : space dimension (D = 2 in this work)

2N + 1 : number of points of the damping stencil

0 < σ < 1 : strength of the filter

• Filters used in this study :

� Standard 5-point stencil (tested by [Skordos, 1995])
� Standard 7-point stencil
� Optimized 7-point stencil ([Tam et al., 1993])
� Optimized 9-point stencil ([Bogey & Bailly, 2004])
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Validations

Fully filtered lattice Boltzmann equation
Filter applied to macroscopic variables
Filter applied to collision operator

First approach

• The filtering operator is applied to the distribution functions(
gα (x, t) = 〈gα (x−cα, t−1)〉 − 1

τ

“
〈gα (x−cα, t−1)〉 − g〈eq〉

α (x−cα, t−1)
”

gα (x, t) → 〈gα (x, t)〉

• New matrix of the eigenvalue problem

M〈gα〉 = (1 − σf ) A−1[I − 1
τ

NBGK]

with the filter function f defined as :

f (k) =
X

j

X
n

dneink·xj
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von Neumann stability analysis
Selective damping filters

Validations

Fully filtered lattice Boltzmann equation
Filter applied to macroscopic variables
Filter applied to collision operator

• Dispersion and dissipation of the D2Q9-BGK filtered with the standard
7-point filter
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• d−n = dn → the filter does not introduce dispersion error
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Validations

Fully filtered lattice Boltzmann equation
Filter applied to macroscopic variables
Filter applied to collision operator

• Effective viscosity can be defined as −Im[ω (k)]/k 2

• Comparison of the effective bulk viscosity for the various filters :
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( ) without filter

( ) optimized 9-point filter of Bogey & Bailly

( + + + + ) optimized 7-point filter of Tam et al.

( ◦ ◦ ◦ ◦ ) standard 7-point filter

( ) standard 5-point filter
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Validations

Fully filtered lattice Boltzmann equation
Filter applied to macroscopic variables
Filter applied to collision operator

Second approach

• Filtered distribution functions imply filtered macroscopic variables

• New algorithm : the filtering operator is only applied to macroscopic
variables8><

>:
gα (x, t) = gα (x−cα, t−1) − 1

τ

“
gα (x−cα, t−1) − g〈eq〉

α (x−cα, t−1)
”

ρ (x, t) → 〈ρ (x, t)〉
ρuj (x, t) → 〈ρuj (x, t)〉

• New matrix of the eigenvalue problem

M
g〈eq〉

α
= A−1[I − 1

τ

`
I − (1 − σf ) Geq´

]
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Validations

Fully filtered lattice Boltzmann equation
Filter applied to macroscopic variables
Filter applied to collision operator

Third approach

• Numerical instabilities are often generated in regions where the
nonequilibrium parts g neq

α of distribution functions become (too) large

• A third filtering strategy is based on a filtered collision operator
gneq

α (x, t) → 〈gneq
α (x, t)〉

〈gα (x + cα, t + 1)〉coll = gα (x, t) − 1
τ
〈gneq

α (x, t)〉

• New matrix of the eigenvalue problem

M
g〈coll〉

α
= A−1[I − (1 − σf )

τ
NBGK]
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Selective damping filters

Validations

Comparison of the three filtering strategies

• Comparison of the effective bulk viscosity for the three filtering
approaches

• Only results obtained with the standard 7-point filter are shown but
conclusions are the same for other stencils
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Validations

Dissipation of acoustic waves
Under-resolved flow simulation
Radiated noise by unsteady flow over cavity

• Propagation of a plane acoustic wave with k a = π/3 (6 points per
wavelength) in a periodic domain; U 0 = 0, 1/τ = 1.99995, σ = 0.1

• Time signal after propagation over 10 wavelengths :
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( ) without filter

( ◦ ◦ ◦ ◦ ) filtered collision operator g 〈coll〉
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( + + + + ) fully filtered LBE 〈gα〉

( ) filtered macroscopic variables g 〈eq〉
α

( � � � ) MRT
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Validations

Dissipation of acoustic waves
Under-resolved flow simulation
Radiated noise by unsteady flow over cavity

• Doubly periodic shear layer with initial perturbation

• About 9 points across shear layers

• 128 × 128 grid, 1/τ = 1/τ8 = 1/τ9 = 1.9988, σ = 0.01
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Standard BGK MRT (1/τ2 = 1.64)
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Validations

Dissipation of acoustic waves
Under-resolved flow simulation
Radiated noise by unsteady flow over cavity

• Doubly periodic shear layer with initial perturbation

• About 9 points across shear layers

• 128 × 128 grid, 1/τ = 1/τ8 = 1/τ9 = 1.9988, σ = 0.01
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Fully filtered BGK MRT (1/τ2 = 1.64)
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Validations

Dissipation of acoustic waves
Under-resolved flow simulation
Radiated noise by unsteady flow over cavity

• Doubly periodic shear layer with initial perturbation

• About 9 points across shear layers

• 128 × 128 grid, 1/τ = 1/τ8 = 1/τ9 = 1.9988, σ = 0.01
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Filtered macroscopic variables MRT (1/τ2 = 1.64)
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Validations

Dissipation of acoustic waves
Under-resolved flow simulation
Radiated noise by unsteady flow over cavity

• Doubly periodic shear layer with initial perturbation

• About 9 points across shear layers

• 128 × 128 grid, 1/τ = 1/τ8 = 1/τ9 = 1.9988, σ = 0.01
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Filtered collision operator MRT (1/τ 2 = 1.64)
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Validations

Dissipation of acoustic waves
Under-resolved flow simulation
Radiated noise by unsteady flow over cavity

• Self-sustained oscillation of flow over rectangular cavity

• Mach = 0.25, 1/τ = 1.98, L/θ0 = 52 (θ0 : boundary layer momentum
thickness)

• Unstable simulation without selective viscosity filter

Simulation setup
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Selective damping filters

Validations

Dissipation of acoustic waves
Under-resolved flow simulation
Radiated noise by unsteady flow over cavity

• Example of simulation with filtered macroscopic variables (σ = 0.15)

Snapshot of vorticity and acoustic pressure

• Results are in good qualitative agreement with other CAA simulations
([Gloerfelt et al. 2001, Rowley at al. 2002])
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Validations

Conclusion

• Selective filters damp unphysical instabilities without affecting physical
waves

• Increase of the computational effort

� lost of "locality" : sharper cut-off filter at higher wavenumber needs
more far points

� macroscopic variable filtering is the less expensive approach
� it is not necessary to apply the filter at each time step
� it is not necessary to apply the filter in the whole computational

domain

• The best efficiency is obtained with the filtered collision operator : a
wavenumber-dependent viscosity is obtained

• Explicit filtering is well suited for LES subgrid models
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