Lattice Boltzmann equation with selective viscosity filter

Denis Ricot¹ Simon Marié^{1,2} Pierre Sagaut² Christophe Bailly³

¹Renault - Research, Material and Advanced Engineering Department ²d'Alembert Institute, Université Paris VI ³Fluid Mechanics and Acoustics Laboratory, Ecole Centrale de Lyon

4th ICMMES - 16-20 july 2007

・ 同 ト ・ ヨ ト ・ ヨ ト

Computational Aeroacoustics (CAA) and LBM

- CAA = high Reynolds number flow simulation + direct simulation of acoustic fields
- LBM has enough accuracy to simulate acoustic phenomena ([Buick et al. 1998, Ricot et al. 2002, Marié et al. 2007])
- LBM is a low dissipative scheme → unstable in high Reynolds flows (low viscosity)

・ロト ・回ト ・ヨト ・ヨト

Stability issue in LBM

- Numerical instability sources : poor initial and boundary conditions, under-resolved shear flow, interpolation errors in multi-resolution simulation...
- Proposed solutions
 - Artifical viscosity (global or local lower bound of the relaxation time [*Li et al., 2004, PowerFLOW*])
 - Dissipative lattice Boltzmann scheme (fractional propagation [*Qian*, 1997])
 - Multiple Relaxation Time model [Lallemand, 2000]...
 - ... or increase of the bulk viscosity [Dellar, 2001]
 - Explicit filter to damp the high wavenumber oscillations [Skordos, 1995]

イロト イヨト イヨト イヨト

3

Presentation outline

von Neumann stability analysis

Linearization and Fourier decomposition Dispersion, dissipation and stability

Selective damping filters

Fully filtered lattice Boltzmann equation Filter applied to macroscopic variables Filter applied to collision operator

Validations

Dissipation of acoustic waves Under-resolved flow simulation Radiated noise by unsteady flow over cavity

A (1) < A (2) < A (2)</p>

• Linearization around a uniform mean flow

$$g_{lpha}\left(\mathbf{x}+\mathbf{c}_{lpha},t+1
ight)=g_{lpha}\left(\mathbf{x},t
ight)-rac{1}{ au}\left(g_{lpha}\left(\mathbf{x},t
ight)-g_{lpha}^{eq}\left(\mathbf{x},t
ight)
ight)$$

$$g^{eq}\left(g^{(0)}_{lpha}+g^{\prime}_{lpha}
ight)=g^{eq,(0)}_{lpha}+rac{\partial g^{eq}_{lpha}}{\partial g_{eta}}\Big|_{g_{lpha}=g^{(0)}_{lpha}}g^{\prime}_{lpha}+o\left(\left(g^{\prime}_{lpha}
ight)^{2}
ight)$$

Fourier decomposition of the fluctuating distribution functions

$$g_{\alpha}^{\prime}\left(\mathbf{x},t\right)=h_{\alpha}\mathbf{e}^{i\left(\mathbf{k}.\mathbf{x}-\omega t
ight)}$$

Eigenvalue / eigenvector problem

$$M\mathbf{h} = \mathbf{e}^{-i\omega}\mathbf{h}$$

Linearization and Fourier decomposition Dispersion, dissipation and stability

Matrix for the LBE-BGK model

$$M^{ ext{BGK}} = A^{-1}[I - rac{1}{ au}N^{ ext{BGK}}]$$

Matrix for the LBE-MRT model

$$M^{\text{MRT}} = A^{-1}[I - P^{-1}SPN^{\text{BGK}}]$$
 with $\mathbf{m} = P\mathbf{g}$, $S = diag[\frac{1}{\tau_1}, ..., \frac{1}{\tau_N}]$

Link between eigenvalues and macroscopic transport coefficients

$$\begin{cases} Re[\omega^{\pm}(\mathbf{k})] = k (\pm c_{s} (\mathbf{k}) + U_{0}(\mathbf{k})) \\ Im[\omega^{\pm} (\mathbf{k})] = -k^{2} (\frac{2}{3}\nu (\mathbf{k}) + \frac{1}{2}\eta (\mathbf{k})) \\ \begin{cases} Re[\omega^{T} (\mathbf{k})] = kU_{0} (\mathbf{k}) \\ Im[\omega^{T} (\mathbf{k})] = -k^{2}\nu (\mathbf{k}) \end{cases} \end{cases}$$

イロト イヨト イヨト イヨト

臣

Linearization and Fourier decomposition Dispersion, dissipation and stability

- Unstable simulation if $Im[\omega(\mathbf{k})] > 0$
- Stability condition depends on k, U₀, τ

D2Q9-BGK : Isocontours of $Im[\omega(\mathbf{k})] > 0$ (unstable regions) in the wavenumber space (k_x, k_y) for $U_0 = U_x = 0.2$ and $1/\tau = 1.99$.

< 67 b

(4) (3) (4) (4) (4)

- D2Q9-BGK : dispersion and dissipation of the three physical modes for $\angle(\mathbf{k}, \mathbf{x}) = \theta_1$
- Dispersion error → mode coincidence for k = k₁
- "Energy transfer" between the positive acoustic mode and the shear mode

- D2Q9-MRT with standard relaxation times ([Lallemand & Luo, 2000]) : "bulk viscosity" relaxation time $1/\tau_2 = 1.64$, "shear viscosity" relaxation times $1/\tau_8 = 1/\tau_9 = 1.99$
- The dispersion error is the same as D2Q9-BGK
- Mode coincidence occurs but $Im[\omega(\mathbf{k})]$ remains negative

D. Ricot, S. Marié, P. Sagaut, C. Bailly Lattice Boltzmann equation with selective viscosity filter

- D2Q9-MRT with the same bulk viscosity as BGK model ($1/\tau_2 = 1.99$)
- In this case the MRT model is unstable
- Other undamped interactions between acoustic modes and kinetic modes occur around $k \approx \pi/2$

Linearization and Fourier decomposition Dispersion, dissipation and stability

Conclusion on the stability analysis

- Numerical instabilities are due to "energy transfer" between acoustic modes and and the other modes
- Standard MRT model is stable but high bulk viscosity must be used
- Standard BGK model : mode interactions occur in high wavenumber domain

 \rightarrow selective wavenumber filter to damp high wavenumber only

・ロト ・回ト ・ヨト ・ヨト

von Neumann stability analysis	Fully filtered lattice Boltzmann equation
Selective damping filters	Filter applied to macroscopic variables
Validations	Filter applied to collision operator

Genereral expression of the filtering operator () for a given variable v :

$$\langle \mathbf{v}(\mathbf{x}) \rangle = \mathbf{v}(\mathbf{x}) - \sigma \sum_{j=1}^{D} \sum_{n=-N}^{N} d_n \mathbf{v}(\mathbf{x} + n\mathbf{x}_j)$$

D: space dimension (D = 2 in this work)

2N + 1: number of points of the damping stencil

 $0 < \sigma < 1$: strength of the filter

- Filters used in this study :
 - Standard 5-point stencil (tested by [Skordos, 1995])
 - Standard 7-point stencil
 - Optimized 7-point stencil ([Tam et al., 1993])
 - Optimized 9-point stencil ([Bogey & Bailly, 2004])

Fully filtered lattice Boltzmann equation Filter applied to macroscopic variables Filter applied to collision operator

First approach

The filtering operator is applied to the distribution functions

$$\left\{ egin{array}{l} g_lpha \left({f x},t
ight) = \left\langle g_lpha \left({f x} {-} {f c}_lpha ,t {-} 1
ight)
ight
angle - rac{1}{ au} \left(\left\langle g_lpha \left({f x} {-} {f c}_lpha ,t {-} 1
ight)
ight
angle - g_lpha^{\left\langle {eq}
ight
angle} \left({f x} {-} {f c}_lpha ,t {-} 1
ight)
ight
angle \ g_lpha \left({f x},t
ight)
ight
angle \left({f x},t
ight
angle \right)
ight
angle \left({f x},t
ight
angle \left({f x},t
ight
angle \right)
ight
angle \left({f x},t
ight
angle \left({f x},t
ight
angle \right)
ight
angle \left({f x},t
ight
angle \left({f x},t
ight
angle \right)
ight
angle \left({f x},t
ight
angle \left({f x},t
ight
angle \right)
ight
angle \left({f x},t
ight
angle \left({f x},t
ight
angle \right)
ight
angle \left({f x},t
ight
angle \left({f x},t
ight
angle \right)
ight
angle \left({f x},t
ight
angle \left({f x},t
ight
angle \right)
ight
angle \left({f x},t
ight
angle \left({f x},t
ight
angle \left({f x},t
ight
angle \right)
ight
angle \left({f x},t
ight
angle \left({f x},t
ight
angle \right)
ight
angle \left({f x},t
ight
angle \left({f x},t
ight
angle \left({f x},t
ight
angle \right)
ight
angle \left({f x},t
ight
angle \left({f x},t
ight
angle \left({f x},t
ight
angle \right)
ight
angle \left({f x},t
ight
angle \left({f x},t
ight
angle \left({f x},t
ight
angle \right)
ight
angle \left({f x},t
ight
angle$$

New matrix of the eigenvalue problem

$$M_{\langle g_{lpha} \rangle} = (1 - \sigma f) A^{-1} [I - \frac{1}{\tau} N^{\mathrm{BGK}}]$$

with the filter function *f* defined as :

$$f(\mathbf{k}) = \sum_{j} \sum_{n} d_{n} e^{i n \mathbf{k} \cdot \mathbf{x}_{j}}$$

von Neumann stability analysis Selective damping filters Validations Validations Selective damping filters Validations

 Dispersion and dissipation of the D2Q9-BGK filtered with the standard 7-point filter

• $d_{-n} = d_n \rightarrow$ the filter does not introduce dispersion error

D. Ricot, S. Marié, P. Sagaut, C. Bailly Lattice Boltzmann equation with selective viscosity filter

< □ > < □ > < □ > < □ >

von Neumann stability analysis Selective damping filters Validations Validations Validations Validations

- Effective viscosity can be defined as -Im[ω (k)]/k²
- Comparison of the effective bulk viscosity for the various filters :

Fully filtered lattice Boltzmann equation Filter applied to macroscopic variables Filter applied to collision operator

Second approach

- Filtered distribution functions imply filtered macroscopic variables
- New algorithm : the filtering operator is only applied to macroscopic variables

$$\begin{array}{l} g_{\alpha}\left(\mathbf{x},t\right) = g_{\alpha}\left(\mathbf{x}-\mathbf{c}_{\alpha},t-1\right) - \frac{1}{\tau}\left(g_{\alpha}\left(\mathbf{x}-\mathbf{c}_{\alpha},t-1\right) - g_{\alpha}^{\langle eq \rangle}\left(\mathbf{x}-\mathbf{c}_{\alpha},t-1\right)\right) \\ \rho\left(\mathbf{x},t\right) \to \langle \rho\left(\mathbf{x},t\right) \rangle \\ \rho u_{j}\left(\mathbf{x},t\right) \to \langle \rho u_{j}\left(\mathbf{x},t\right) \rangle \end{array}$$

• New matrix of the eigenvalue problem

$$M_{g_{\alpha}^{\langle eq \rangle}} = A^{-1} [I - \frac{1}{\tau} \left(I - (1 - \sigma f) \, \mathbf{G}^{eq} \right)]$$

Fully filtered lattice Boltzmann equation Filter applied to macroscopic variables Filter applied to collision operator

Third approach

- Numerical instabilities are often generated in regions where the nonequilibrium parts g^{neq}_a of distribution functions become (too) large
- A third filtering strategy is based on a filtered collision operator

$$\begin{cases} g_{\alpha}^{neq}\left(\mathbf{x},t\right) \rightarrow \langle g_{\alpha}^{neq}\left(\mathbf{x},t\right) \rangle \\ \langle g_{\alpha}\left(\mathbf{x}+\mathbf{c}_{\alpha},t+1\right) \rangle_{coll} = g_{\alpha}\left(\mathbf{x},t\right) - \frac{1}{\tau} \left\langle g_{\alpha}^{neq}\left(\mathbf{x},t\right) \right\rangle \end{cases}$$

• New matrix of the eigenvalue problem

$$M_{g_{\alpha}^{\langle coll
angle}} = A^{-1} [I - rac{(1 - \sigma f)}{ au} N^{
m BGK}]$$

・ロト ・回ト ・ヨト ・ヨト

Comparison of the three filtering strategies

- Comparison of the effective bulk viscosity for the three filtering approaches
- Only results obtained with the standard 7-point filter are shown but conclusions are the same for other stencils

von Neumann stability analysis Selective damping filters Validations Radiated noise by unsteady flow over cavity

- Propagation of a plane acoustic wave with k_a = π/3 (6 points per wavelength) in a periodic domain; U₀ = 0, 1/τ = 1.99995, σ = 0.1
- Time signal after propagation over 10 wavelengths :

イロト イヨト イヨト イヨト

э

von Neumann stability analysis	Dissipation of acoustic waves
Selective damping filters	Under-resolved flow simulation
Validations	Radiated noise by unsteady flow over cavity

- Doubly periodic shear layer with initial perturbation
- About 9 points across shear layers
- 128×128 grid, $1/\tau = 1/\tau_8 = 1/\tau_9 = 1.9988$, $\sigma = 0.01$

(日)

- von Neumann stability analysis Selective damping filters Validations Radiated noise by unsteady flow over cavity
- Doubly periodic shear layer with initial perturbation
- About 9 points across shear layers
- 128×128 grid, $1/\tau = 1/\tau_8 = 1/\tau_9 = 1.9988$, $\sigma = 0.01$

von Neumann stability analysis	Dissipation of acoustic waves
Selective damping filters	Under-resolved flow simulation
Validations	Radiated noise by unsteady flow over cavity

- Doubly periodic shear layer with initial perturbation
- About 9 points across shear layers
- 128×128 grid, $1/\tau = 1/\tau_8 = 1/\tau_9 = 1.9988$, $\sigma = 0.01$

von Neumann stability analysis	Dissipation of acoustic waves
Selective damping filters	Under-resolved flow simulation
Validations	Radiated noise by unsteady flow over cavity

- Doubly periodic shear layer with initial perturbation
- About 9 points across shear layers
- 128×128 grid, $1/\tau = 1/\tau_8 = 1/\tau_9 = 1.9988$, $\sigma = 0.01$

von Neumann stability analysis	Dissipation of acoustic waves
Validations	Radiated noise by unsteady flow over cavity

- Self-sustained oscillation of flow over rectangular cavity
- *Mach* = 0.25, $1/\tau = 1.98$, $L/\theta_0 = 52$ (θ_0 : boundary layer momentum thickness)
- Unstable simulation without selective viscosity filter

Simulation setup

・ロト ・ 四 ト ・ ヨ ト ・ ヨ ト

臣

von Neumann stability analysis	Dissipation of acoustic waves
Selective damping filters	Under-resolved flow simulation
Validations	Radiated noise by unsteady flow over cavity

• Example of simulation with filtered macroscopic variables ($\sigma = 0.15$)

Snapshot of vorticity and acoustic pressure

• Results are in good qualitative agreement with other CAA simulations ([Gloerfelt et al. 2001, Rowley at al. 2002])

Conclusion

- Selective filters damp unphysical instabilities without affecting physical waves
- Increase of the computational effort
 - lost of "locality" : sharper cut-off filter at higher wavenumber needs more far points
 - macroscopic variable filtering is the less expensive approach
 - it is not necessary to apply the filter at each time step
 - it is not necessary to apply the filter in the whole computational domain
- The best efficiency is obtained with the filtered collision operator : a wavenumber-dependent viscosity is obtained
- Explicit filtering is well suited for LES subgrid models

・ロト ・回 ト ・ヨト ・ヨト

3