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Abstract

The semi-Lagrangian Vortex method (VM) and the Lattice Boltzmann method (LBM) are used to
investigate flows simulations in the incompressible regime. In this study, a proven version of each
method is used and compared on different three dimensional benchmarks in terms of numerical
accuracy, convergence, numerical diffusion and dissipation. The first comparisons are made on
a convected vortex to study and compare the numerical dissipation of LBM and VM. Then the
Taylor-Green vortex is investigated to compare the dissipation rate of the kinetic energy of each
method. It is shown that both methods converge to the same solution but in a different way. The
VM performs better than the LBM for the lowest resolution whereas LBM appears to be more
accurate for the growing resolutions. These results are confirmed on 3D simulations with wall
boundaries for the stiff test case of the wake behind a 3D cube at Re = 290 and Re = 570.

Keywords: Vortex Methods, Lattice Boltzmann, Comparison, Numerical simulation, method
accuracy, Taylor-Green Vortex, flow around a cube

Introduction

The design of numerical methods to study fluid flows has had a tremendous development during
past decades. A large family of these methods such as finite difference, finite volume or finite
element approaches as well as spectral/pseudo-spectral methods that deal with primitive variables
and purely Eulerian frameworks, have been extensively studied both from consistency/stability
point of view as well as numerical diffusivity and dissipation characterization. The later aspect
is important to explore how numerical methods discretization properties affect the numerical
efficiency and robustness and is highly dependent on the link between the scheme and the grid.

Two other classes of methods, namely Lattice Boltzmann and particle approaches, have met a
large development recently in the context of incompressible or weakly-compressible flows. The
first and major common thread shared by these two methods relies on the fact that they intrin-
sically differ from the traditional approaches previously cited. In particular they do not directly
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deal with primitive variables contrary to previous methods and, in particular, the pressure field is
not directly computed in their primary discretization. Moreover, they shortcut the non-linearities
related to the advection phenomenon. For these reasons, they represent for many flow prob-
lems a promising alternative of software design. Now, if one considers Lattice Boltzmann and
particle approaches with respect to each other, they interestingly show complementary aspects:
indeed, on one side Lattice Boltzmann methods lie on a mesoscopic approach: they follow the
evolution of probability distribution functions of fluid particles, thank to a fixed lattice, instead
of calculating the usual macroscopic variables involved in Navier-Stokes equations. On the other
side, particle methods are Lagrangian approaches: the particles, playing the role of discretiaza-
tion elements and computational “points”, move with the material velocity and the evaluation
of the macroscopic quantities are evaluated on these numerical particles. Lattice Boltzmann is
a mesoscopic Eulerian approach, whereas particle methods are macroscopic and Lagrangian. A
recent focus on this kind of approaches has been investigated [1] for Lattice Boltzmann and SPH
(Smoothed Particle Hydrodynamics) methods to solve 2D problems in multiphase flows, which
demonstrates the current interest of such type of alternative and non-traditional methods.

The present work aims at describing and comparing a semi-Lagrangian Vortex particle method
and a Lattice Boltzmann method, in order to try to numerically highlight the above statements
in the case of various physical 3D problems in CFD (Computational Fluid Dynamics). All the
computations made in this study are based on in-house and research codes, developed or co-
developed by the authors of the present paper.

Vortex methods (VM) belong to particle methods. They are based on a Lagrangian or semi-
Lagrangian description of the governing equations (Euler equations, linear convection-diffusion
equation, Navier-Stokes equations) which, when they are resolved, provide the dynamics and the
evolution of the fluid elements. In the case of Vortex methods, the fluid elements are numerical
particles, characterized by their spacial position and the vorticity they carry. With the first vortex
sheet computations in the 1930’s [2, 3], the Vortex methods correspond to one of the first numer-
ical method ever used in the Computational Fluid Dynamics community. This can be explained
by their very natural framework provided by the particle approach, mimicking the physics, which
make them particularly well suited for advection dominated flow problems in particular because
the Lagrangian treatment of the convective term is free of numerical dissipation. In the 70’s, a lot
of efforts have been devoted to propose numerical developments that overcome the main intrinsic
difficulties of Lagrangian Vortex methods, mostly relying on the modeling of the viscous effects
in Navier-Stokes equations [4, 5] and the treatment of boundary conditions [6]. Significant de-
velopments were also made in the last decade in order to provide to Lagrangian Vortex methods
(also called Particle Vortex methods) an efficient evaluation of the velocity field. Indeed, for
N, particles in the computational domain, the classical resolution of the Biot-Savart law (which
gives the velocity from the vorticity) implies to compute the interactions between all the par-
ticles, leading to a O(le,) computational cost. The development of the Fast Multipole Method
(FMM) allowed to drastically reduce the cost of such operation [7, 8, 9, 10, 11]. Moreover, the
issue related to the distortion of the particle distribution, which is one of the major drawback of
pure Lagrangian methods, has been subject to deep researches in order to design accurate Parti-
cle Vortex methods preventing from high clustering or rarefaction of the vortex particles in the
domain [10, 12, 13].

Thanks to the remeshing technique introduced in the 90’s [14, 15], it exists another main vari-
ant of Vortex methods, which relies on a semi-Lagrangian approach. The remeshing technique
was originally proposed to bypass the inherent problem of the distortion of Lagrangian particle
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distribution. It consists in periodically redistributing the particles onto an underlying Cartesian
grid in order to ensure their overlapping and thus the convergence of the solution. Following
the introduction of this remeshing procedure, semi-Lagrangian Vortex methods emerged, also
called remeshed Vortex methods (or Vortex Particle-Mesh method or Vortex-in-Cell method).
They are characterized by the fact that the vorticity transport equations and the velocity equation
are both handled on the particles field and on a Cartesian grid. They allow one to benefit from
the strengths of Particle Vortex schemes to handle the flow advection and from the one of grid-
based methods, like immersed boundary methods to model boundary conditions or FFT to solve
the Poisson equation. Based on these different improvements, Vortex methods have matured and
now offer a robust framework able to compete with pure Eulerian methods in the handling of chal-
lenging problems like interface tracking for colliding obstacles [16], fluid-structure interaction
[17, 18, 19], shape optimization [20], flows past bluff bodies [19], passive control using porous
media [21], wind turbine aerodynamics [22] or reinforcement learning [23]. In the present study,
the VM denomination will be restricted to the remeshed (semi-Lagrangian) Vortex method. All
the VM simulations presented in this work are based on an in-house parallel and object-oriented
library, implemented in Python/Fortran language.

The Lattice Boltzmann Method [24, 25] (LBM) is nowadays recognized as a fast and reliable
algorithm to numerically solve the Boltzmann equation. The physics of this kind of model is
led by a mesoscopic description of the collision between particles. Hence, if a given collision
operator is chosen with a reliable equilibrium state, a wide variety of physical modeling could
be obtained, from turbulent to relativistic flows [26, 27, 28]. In order to describe fluid dynam-
ics, governed by the Navier-Stokes equation, the BGK collision operator, based on a relaxation
towards the equilibrium, has been shown to be an efficient mesoscopic description [29]. The
Lattice Boltzmann methods then perform a discretization of the velocity space in which the fluid
particles are allowed to displace. This discretization has to be highly connected to the mesh and
induces strong constrains in the choice of the velocity lattice. These constrains are often coupled
to the algorithmic advection which basically relies on a collision and a propagation step. The
propagation step is led by the mesh and the collision step depends on the description of the relax-
ation process. The traditional way to describe this step is to assign a relaxation parameter to the
main statistical moments when they relax to their equilibrium state. This model, also referred to
as MRT model for Multiple Relaxation Times [30] has been shown to recover the behavior of the
weakly compressible Navier-Stokes equation. It has been shown [31, 32] that this kind of method
has a lower dissipation error compared to traditional finite-difference schemes. As a counterpart,
LBM suffers from numerical instabilities when Reynolds number becomes high. The origins of
LBM instabilities have been actively studied and remain an open subject [33, 34, 35]. Some
modern collision models have now emerged and could improve those aspects by changing the
moments definition [36], by re-normalizing the post-collision step [37], or by enforcing energy
conservation [38, 39, 40]. A theoretical comparison of a wide variety of collision models has
been recently reviewed in [41, 35]. In the present study, the LBM method will be restricted to the
standard MRT model with optimized relaxation times defined in [30]. All the LBM simulations
exposed in this work are based on this approach, which is implemented in a proper in-house
parallel scientific Python/Fortran code.

Despite their increasing applications, the Lattice Boltzmann and Vortex methods suffer from a

lack of extensive computational characterization in the literature (dissipation, diffusivity, param-

eter dependency, etc.) and deserve a better focus on such issues. This paper is devoted to the

numerical characterization of a Lattice Boltzmann and a remeshed Vortex method. On one hand
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this work aims at enlightening the effect of the time and space discretization refinement on the
accuracy and robustness of these techniques and on the other hand at clarifying their grid vul-
nerability with a quantitative evaluation of the numerical diffusion and dissipation. Finally, this
study is an attempt to classify the strong and weak points of both methods in order to offer an
understanding of their range of efficiency.

This paper is organized as follows, the first section is dedicated to the presentation of some
basic theoretical background of each method, where the differences and similarities of LBM and
VM algorithms are clearly highlighted and discussed. Then, in section 2, the two methods are
compared in terms of numerical dissipation on classical test cases : first, the simulation of a
simple convected vortex is investigated in a 3D periodic domain and then the three-dimensional
Taylor-Green vortex flow is performed, followed by a discussion on the evolution of enstrophy
and kinetic-energy. Then, section 3 discusses the effect of wall boundary condition for each
method on the three-dimensional flow past a cube at different Reynolds numbers.

1. Theoretical backgrounds

1.1. Vortex method

1.1.1. Governing equations
Vortex methods are based on the velocity-vorticity formulation of the incompressible Navier-
Stokes equations in a domain D, which reads:

ow 1 .
ar + (- Vo—-(w-V)u= ReAw in D. Q)
In this equation w, u and Re respectively denote the vorticity, the velocity and the Reynolds
number. The first term corresponds to the advection of the vorticity w carried by the particles at
the velocity u. The second non-linear term (w- V)u models the stretching of the flow structures (it
vanishes in 2D) and the right hand side term represents the diffusion of w under viscous effects.
This equation has to be coupled to the system giving the velocity in terms of the vorticity. Using
the incompressibility condition, the velocity may be directly linked to the vorticity through the
following Poisson equation:

Au=-V X w. 2)

The system (1)-(2) has to be complemented by appropriate boundary conditions at artificial
boundaries and at solid boundaries (if present). The prescription of such solid boundary con-
dition may be done by adding a forcing term in the right hand side of equation (1). This issue
will be specifically addressed in section 3.

1.1.2. Discretization method

To solve the (w,u) Navier-Stokes equations (1)-(2), the flow is discretized onto particles that
carry the vorticity field w transported at the velocity u and the resolution of the governing equa-
tions is based on a splitting algorithm, which consists at each time step in successively solving



the following equations:

Au=-VXw 3)

66_(;) =div(w : u) 4)
‘98—‘;’ - RieAw 5)
aa—(;)+(u~V)w=O (6)
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The discretization of each equation of this fractional step algorithm is realized in this study by
using a remeshed vortex method.
The advection of vorticity field (eq. (6)) is performed in a Lagrangian way using a vortex method:

dx,
dt

xZ =x!, (advection)

du)p (8)
—= =0,
dt
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At each time step of the method, numerical particles are created on the nodes i of an underlying
uniform Cartesian grid (x}, = x}') and the new position x;” of each particle p is obtained by solv-
ing dixp, = u;' (xp), while the transported vorticity remains constant (d;w, = 0). This Lagrangian
treatment of the advection step is close to the physics and provides a flexible resolution of the
non-linearities, decreasing drastically the numerical diffusion. In this work, we numerically in-
tegrate the particle positions in time (d;x, = u/}(x,)) by using an explicit 2" order Runge-Kutta
method. The only difficulty of this step relies on the interpolation of the velocity field at the
intermediate position of the particles in the RK2 scheme, since this intermediate position will
not always be aligned with the grid. In the present case, it is performed by using bilinear inter-
polation.

Once the particle positions x, have been updated according to the flow velocity, the vorticity car-
ried by each particle is redistributed on the neighbouring points of the underlying Cartesian grid
using a remeshing kernel of type A, [42] (cf last equation of system (8)). The A, , remeshing
kernels are piecewise polynomial functions of regularity C”, satisfying the conservation of the
first p moments. The one used in this work is A4: this kernel is of regularity C2, it satisfies the
conservation of 4 moments and includes 6 grid points by direction in its support on which each
particle can be redistributed. In this work, the particle advection and the remeshing procedure
are performed using a directional splitting approach [43]. It consists in successively solving 1D
convection/remeshing problems, direction by direction, as written in eqs. (8). This directional
splitting allows to save significant computational efforts compared to a classical tensorial ap-
proaches, especially in 3D.

The systematic remeshing of particles onto an Eulerian grid at each time step after the advection
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stage (eq. (6)), enables to ensure the overlapping of particles required for the convergence of the
method. Moreover the presence of the grid allows to discretize the other equations using efficient
and/or fast grid methods (finite differences and spectral method based on FFT evaluations). In
the present algorithm, equations (3) to (5) are solved on the grid.

The Poisson equation (3) is resolved in the Fourier space with periodic boundary conditions
according to the following expression :

— I —
u(é) = @(an)) €))

In the presence of an underlying mesh that is uniform and Cartesian (like in the present VM), the
use of FFT-based evaluations for the velocity computation may be considered as one of the most
appropriate and efficient approach [44, 45]. However, if the grid is non-uniform then the use of
other type of algorithm is mandatory. In that case, the most famous and efficient one, which is
widely used in meshless (i.e. purely Lagrangian) Vortex methods [46, 11], is the Fast Multipole
Method (FMM) like in the works dealing with adaptive mesh refinement (AMR) [47, 48].

Regarding the stretching problem (4), it is considered here in its conservative formulation:

6(()_(;) =div(w : u), (10)
where div(w : u) := (v - V) u + u div(w). The time integration scheme chosen here to discretize
this equation is the 3 order Runge-Kutta scheme. Throughout this time discretization, the
velocity field involved in the divergence operator is not modified. The divergence operator is
discretized through a 4™ order centered finite-differences scheme on the grid.

Concerning the diffusion equation (5), it is discretized in time using an implicit 1* order Euler
scheme and then solved in the Fourier space.

An adaptive time-step Afygap: (7) is computed at the end of the fractional step algorithm. It is
based on the non-linear stability of the advection/remeshing scheme in Vortex methods:

Afor. < LCFL
adv = o 1
IVulle

(1)

where the LCFL denotes the Lagrangian CFL [49]. This number must satisfy LCFL < 1 [42],
which, from a physical point of view, imposes that particles trajectories do not cross. As the time
step defined by this stability condition (11) is not constrained by the grid size or the distance
between the particles but only by the flow strain, it often provides larger time steps compared to
Eulerian schemes, based on CFL conditions.

Table 1 summarizes the time and space discretization schemes used in this work to solve each
equation of the present fractional step algorithm.

The fractional construction of this algorithm offers a flexibility in the choice of the discretiza-
tion schemes of each step. The algorithm exposed in this work is one of the different existing
remeshed vortex algorithms in literature. We can cite for instance the remeshed vortex algorithms
used in [50] and [16], which differ from the present one by the nature of the remeshing kernel
(A, instead of A4, here), by a tensorial approach for the advection/remeshing step (contrary to
the directional one proposed here), or by the use of a centered fourth-order [50] or second-order
[16] finite differences scheme for the evaluation of the viscous term. In the algorithm established
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Equation Time discretization method Space discretization method

Poisson equation (3) - spectral method

Stretching (4) RK3 scheme 4% order centered FD

Diffusion (5) implicit Euler scheme spectral method

Advection + Remesh (8) RK2 scheme (particles advec.) remeshing with A4 kernel
Adaptive time step (7) - 4™ order centered FD (LCFL < 1)

Table 1: Time and space discretization methods used for the resolution of the viscous splitting VM algorithm (egs. (3)

to (7)).

by [22], the main difference with respect to [50, 16] or the present one relies on the fact that the
remeshing operation is not performed every time step but only every 5 time steps (using a A |
kernel, with a tensorial approach). This choice implies a particle-to-mesh and a mesh-to-particle
interpolation operation for the time steps where remeshing in not applied.

Providing the stability and consistency of all the numerical schemes used in each sub-steps,
remeshed Vortex method algorithms are proved to converge numerically as shown in the above
literature reference and as it will be highlighted in the next sections of this paper.

1.2. Lattice Boltzmann method

The Lattice Boltzmann method [24], used to perform fluid flow simulations, is not directly based
on the resolution of the Navier-Stokes equations but is a particular discretization of the Boltz-
mann equation, describing the dynamics of gas:

0f(c,x,t)+ of(e.x,n) _(df
a ey o)y,

12)

where f(c, x, f) is the distribution of particles density with a given velocity ¢ at a given position x
at time ¢. The left hand side terms corresponds to the propagation (advection) of the particles and
the right hand side term represents the time evolution of the distribution function f due to the
collisions between particles. In this work, the collision between particles is given by the BGK
[29] collision operator which describes an average collision effect through the relaxation to a
local equilibrium f“? with a relaxation parameter 7:

af(e,x,1) 6f(c,x,t)__l e
< Ut A0 (13)

In order to solve (13) numerically, one should restrict the velocity space to a discrete one. This
part is very important and gives the LBM its numerical originality. To perform this discretization,
the standard Gauss quadrature is used and is detailed in [26]. The number of lattice points needed
to achieve a given dynamics is directly connected to this latter step and converts f(c, X, t) into
f(cq, X, t) where a denotes the discrete velocities indices. The usual 19 velocities lattice (D3Q19)
allows to recover the dynamics described by the 3D isothermal Navier-Stokes equations for small
Mach numbers. From this lattice, one could define an equilibrium function in its incompressible
polynomial form:

2 2
u.c u.c u
f:;q(X, t) = PWy +p0wa( ~20/ ( ~Z) _ | le)
¢ 2¢, 2¢;

0
7

(14)



where py is a unity constant and the coefficients w, and ¢, are defined by:

11 1
0 = 3>TgrAs =0,=1.6,0=7.18
“eT 3136 0 T “
1 5)
G’ = =
3
The macroscopic variables, p, u are linked to the distribution functions f by their moments:
p = Z Ja
a (16)

pu Z Cofo

Then, the final step to get the LBM algorithm is to perform a space and time discretization. This
is achieved by using the advective properties of the left-hand side of equation (13) which can be
integrated along the characteristic ¢, to get the following LBM algorithm:

d e
gN(x, 1) go(X, 1) — T_t(g(,(x, 1) — g5 (X, 1))

3 (17
go(x, 1) = gl — ¢odt, t — df)

where the g, distribution function comes from the integration step to get an explicit formulation
and is related to the distribution f,, with the relation g, = f,+ 2 (f,— f,*) which implies go' = f;*
and 7, =7+ %.

From this, the algorithm imposes df = dx = 1 in order to be consistent with a uniform grid
size imposed by the lattice. Then one could define some physical time and grid steps in order
to compute physical quantities from lattice quantities. This is done by introducing the physical
speed of sound ¢y which defines:

Af = Z‘QA)C

(18)
o

where Ax is the physical grid step obtained by discretizing a reference length scale L with a

given number of points N. Based on these parameters, the LBM algorithm can recover the

Navier-Stokes dynamics with a second-order accuracy in space and time.

In the BGK collision operator, the distribution functions relax toward the equilibrium according
to a single relaxation time. A more sophisticated idea is to relax each moment according to a
proper relaxation time. This method is called multiple relaxation time (MRT) [30] and is known
to alleviate some stability issues encountered with the BGK operator. The implementation of the
MRT model is based on the modification of the collision step of equation (17) which is done in
the momentum space:

coll e
{ m(x, 1) m(x, 1) — S(m(x, f) - m*(x, 1)) (19)

gx,t) = M'm“Ux - c,dt, t - di)
where the matrix M, transforms the distribution functions into moments:

m = Mg. (20)
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M is a square transformation matrix. If the first line of the matrix is filled only by 1, then the first
moment is the density. The invert transformation from the moments to distribution functions is
simply g = M~'m. Further details about the construction of the matrix M can be found in [30].
The equilibrium moments are obtained from m*? = Mg®?. The diagonal of S corresponds to the
inverse of the relaxation time, also called relaxation rate, associated with each moment:

S = diag (0, 51, 52,0, 53,0, 53,0, 53, Sy, 52, Sy, $2, Sys Sy» Sy, 4, 54, 54)) (21

where s, is related to the fluid viscosity:

1 1
— =3y—— 22
Sy v 2 @2)
The other relaxation rates, sy, 53, s3 and s4 do not appear in the macroscopic equations and are
chosen according to stability optimization [51, 30] leading to s; = 1.19, 5, = 1.4, 53 = 1.2,54 =
1.98. The BGK operator is recovered if all the relaxation rates are the same.

Then the LBM algorithm used in this study will rely on equations (14), (16) and (19), imposing
the physical parameters with (18) and (22). It is to be noticed that other forms of the collision
operator are possible [36, 37, 52, 53, 54, 55, 56] but would give very similar results for the test-
cases considered in this study. Moreover, a high order formulation of eq. (14) could be adopted
to enhance stability issues [57] and to reach higher Mach numbers [58]. A detailed theoretical
comparison of the different collision models and their impact on the physics can be found in [41]
and [35]. Then, the massively used D3Q19 lattice with the MRT collision operator will serve as
the reference LBM model in the following comparisons.

1.3. Algorithmic comparison

In order to summarize the theoretical backgrounds exposed in the previous sections, the basic
steps of each algorithm are detailed in Table 2.

Step LBM VM
Initialization (+* = 0) | Compute g, from p and u Compute w = V X u from u
RHS update Collision from (19)-1 Stretching (4) and diffusion of w (5)
Advection Streaming from (19)-2 Particles advection + remeshing (8)
Macro state update | Compute p and u from g, Compute u from w (3)
and update (14)

Table 2: Comparison of the basic algorithmic steps for present LBM and VM methods.

In order to compare this two different kind of methods, some important features should be pointed
out. The computed quantities of each method are basically different. Indeed, LBM computations
compute the distribution functions and give direct access to density and velocity whereas VM
methods compute the vorticity and the velocity. Then because of the incompressible nature of
the VM, only velocity and vorticity will be compared in this study. The Mach number of the
LBM method will always be chosen to a low value and the equilibrium will be computed with
relation (14). Finally, it should be mentioned that the vorticity is not a native quantity in the LBM
algorithm and must be reconstructed. Then when a time evolution of the vorticity will be needed
in LBM computations, it will be reconstructed inside the algorithm with only second order in
space to preserve the global order of computation.
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Then, it should be highlighted that a fine computational cost comparison is delicate to handle
in the present study. Indeed, these types of considerations are very dependent on the level of
implementation of the algorithms (pedagogic, academic, industrial, optimized) and should be
considered in a dedicated study. However, some basic features of the implementation can be
pointed out for each method (they will be confirmed in section 2.1 with Table 3 giving indica-
tive CPU-times for a well chosen test case). Concerning LBM, the classical implementation of
the algorithm is spread out into a local collision step which represents the main computational
cost and an advection step which is generally very fast due to the low stencil of the D3Q19
lattice. The counterpart of this efficiency is that the LBM timestep is generally limited by the
grid step, meaning that it should be low for high resolution. Concerning VM, the computational
time dedicated to the resolution of the advection/resmehing step is also rather fast due to the
directional splitting (successive resolutions of 1D problems in each spacial direction), as well as
the resolution of the Poisson equation and diffusion (by using the optimized FFTW library). On
the other side, the resolution of the stretching equation and the evaluation of Af,g.p represent a
non negligible part or the total computational time within one time step. However, the use of
such adaptive time step enables to significantly reduce the number of total iterations needed to
complete simulations, which leads to a net reduction of total computational time compared to
simulations based on classical CFL conditions.

2. Numerical dissipation

In this section some standard test-case computations will be performed to characterize the level
of numerical dissipation induced by each method. To investigate this kind of numerical char-
acteristics, the linear stability analysis (LSA) of the scheme could be a powerful and efficient
theoretical tool. The LSA of the LBM has been the purpose of numerous studies [59, 31, 60].
The main conclusion of these studies relies on the low dissipation rate of the perturbative (or
acoustic) mode due to the mesoscopic nature of the method and a level of numerical dissipation
for the vorticity mode comparable to 3™ order of macroscopic method such as finite-differences.
Concerning remeshed Vortex methods, according to the authors knowledge, there is no LSA or
complete numerical analysis of convergence for fractional step algorithms like the one used in
this paper (cf Tab. 1) due to its heterogeneous aspect. However, it is important to mention the
theoretical studies carried out in the pure Langrangian framework of the Vortex methods: Hald
in 1979 [61] and then Beale and Majda in 1982 [62] proved the theoretical convergence of pure
Lagrangian Vortex methods in the context of the 2D Euler equations (inviscid flows). Later, the
time discretization was added in the convergence analysis of the 2D and 3D Euler equations by
Anderson and Greengard in 1985 [63]. Besides the existence of a theoretical convergence analy-
sis, a very interesting feature of Lagrangian Vortex methods relies on the fact that they conserve
many inviscid flow invariants. For the 2D Euler equations, Vortex methods guarantee the con-
servation of 4 invariants, namely the total circulation, the linear and angular impulses as well as
the kinetic energy, as proved in [64]. The conservation properties of Lagrangian Vortex methods
ensure that they are naturally free of numerical dissipation which implies that, even for underre-
solved simulations, they provide correct qualitative solutions. Concerning the semi-Lagrangian
aspect of the method and the particle remeshing, Cottet et. al [42] proved recently the consis-
tency and linear stability of the advection/remeshing scheme (eqs. (8)) with remeshing kernels
A, until p = 8.

A relative comparison of the present LBM and remeshed VM on well-known test cases will
10



therefore give some insight on the numerical dissipation induced by these non fully macroscopic
methods.

2.1. Advection of a simple vortex

For this first test case, the simple and widely used Taylor vortex is investigated. Here, the convec-
tion of a viscous vortex is used to characterize the effects of each discretization strategies on the
dissipation of a simple coherent structure. For this test case, a periodic [L, L, L/4] domain is used
and the velocity field is initialized by equations (23) where r*> = (x—x)>+(y—y0)?, ro = L/10 and

“j vorticity profile Ut 1 r2
08 velocity profile U, = Uoo - _(y - y()) eXp| = 1- -
0.6 ro 2 rO
0.4 U, 1 )
0.2 uy = —(x - xo) eXp|= 1- )
0.0 1o 2 rO
—02 u, = 0
—0.4
0 1 2 r/fir“ 4 5 6 (23)

Figure 1: Velocity and vorticity profiles of the convected Taylor vortex.

U; = U /10. The LBM pressure is initialized so as to ensure the isotropic condition and avoid
some spurious oscillations. This latter point is particularly discussed in dedicated publications
[65, 66]. The Taylor vortex has the particularity to be surrounded by a negative vorticity region
between r = ry and r = 4ry. Moreover, the velocity profile has a compact form and reaches a
very small value for r > 4ry (Fig. 1). For this first comparison, all the numerical parameters such
as grid size and time-step will be the same for both LBM and VM. Then in order to get rid of
the peculiar normalization procedure of each method and for the sake of clarity, the vortex will
be defined in physical units. Thus, the characteristic dimensions are taken to U, = 34m/s and
L = 1.28m. The Reynolds number based on ry is set to 100 in order for the diffusion term to be
effective in the VM algorithm. Indeed, this test case is usually performed in the inviscid form
to get rid of the viscous dissipation and directly compare the numerical dissipation. But for the
present study, the numerical schemes are compared in the three presented test cases with all the
features described in Table 2. From these parameters, the grid size is set to Ax = L/N where N
is the grid resolution and the time-step is chosen so as to enforce a CFL number based on the
upstream velocity CFL = Uoo%( =1/ /3 ~ 0.057 for both LBM and VM models.

The center of the vortex is initially positioned at the center of the 3D periodic [L, L, L/4] do-
main and its convection is observed through a given number of domain crossings while the grid
resolution N X N x N/4 in the whole domain is varying from N = 16 to 256. Concerning the
present VM, since it is a semi-Lagrangian Vortex method, one recalls that at each time step of
the algorithm the particles are redistributed on the background grid nodes and then convected in
a Lagrangian way (cf eqs 8), thus implying that the total number of particles in the domain is
always equal to the underlying grid resolution.

The velocity and vorticity signals recorded in the center point of the domain are plotted on
Figures 2, 3 and 4 with respect to the normalized time * = tUs /L .

First of all, the convergence behavior is clearly different in VM and LBM. Indeed, from Figure
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Figure 2: Time evolution of the velocity norm at the center of the computational domain.
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Figure 4: Time evolution of the vorticity norm at the center of the computational domain.
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Figure 5: Vorticity isocontours at different resolutions (rows) and different times (columns) (initial time, 2nd domain-
crossing and 5th domain-crossing). Each thumbnail shows the face-to-face results for VM (top part) and LBM (bottom
part). The isocontours levels are set to —0.01 (black), 0.01 (green), 0.2 (red) and 0.8 (magenta).

2, one can see that the coarse resolution underestimates the LBM velocity whereas it is overesti-
mated with VM. The LBM results exhibit a large dispersion for coarse resolution.

Then, it should be noticed that the LBM vorticity is a reconstructed quantity which explains that
the initial vorticity for the lowest resolution is slightly lower than the theoretical one because
of the second order reconstruction (see the solid blue curve at t* = 0 on Fig. 3). Thus the
vorticity level for the LBM results at the lowest resolution should be interpreted with this initial
reconstruction error. Then the first global results of Figure 3 clearly show a similar behavior
for LBM and VM results. The stronger difference is observed for the lowest resolution where
the LBM results exhibit a higher numerical dispersion of the convected vortex, which is not at
the expected position. The close-up view of Figure 4 highlights that the VM vortex has less
dispersion for the overall resolutions.

The comparisons of the vortex shapes in Figure 5 confirm these observations by highlighting a
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strong deformation of the LBM vortex for the lowest resolution after 2 domain-crossings (second
column of Fig. 5). Then the vortex dissipates and the limit of the negative vorticity ring reaches
the end of the domain (last column of Fig. 5). We note that the vortex shapes obtained for both
methods with N = 256 do not show qualitative change compared to the case N = 128 and are
consequently not represented in Figure 5.
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Figure 6: Numerical dissipation of the velocity (left) and vorticity (right) norm, with respect to the numerical wavenum-
ber. The dashed line represents the theoretical dissipation rate of the vorticity mode [67] —vk?.

To take into account the overall results for both velocity and vorticity, the evolution of the nu-
merical dissipation with the numerical wavenumber is shown in Figure 6. This dissipation rate
G is estimated by averaging the norm of the desired quantity q during the period T = L/U, and
by computing the ratio between the last 2 periods and the first 2 periods:

11772 1741
s lalldt

3772
-y la)lde

(24)

where the intervals of time integration [£, 2] and [}, 1L ] are graphically represented by ver-

tical dotted lines in Figure 2.
Figure 6 displays the evolution of G, and G, (velocity and vorticity dissipation respectively)
against the numerical wavenumber &, which is computed by assuming from Figure 1 that the vor-
tex have a global wavelength of 8rj. As the grid resolutions vary among N = 16,32, 64, 128,256
they correspond to numerical wavenumbers respectively equal to:
F=kdr= Zax=
8rp 2%

= 0.491,0.245,0.123,0.061, 0.031.

The observed dissipation have similar level for both methods with a slight trend for VM to better
propagate the low resolved vortex due to its low dispersion brought by the Lagrangian advection
step. For high resolved vortex, the numerical dissipation produced by both methods tends to
zero: the total dissipation of the solution tends to the physical viscous dissipation, as can be seen
on the right hand side of Figure 6 where a comparison of the numerical vorticity dissipation with
respect to the theoretical dissipation rate of the vorticity mode —vk? is given.

Table 3 gives indicative computational times, obtained respectively with LBM and VM for the
convected eddy test case. For the coarsest resolutions, namely N = 16, 32, 64, the data reported
14



in the table correspond to the mean of the CPU-times obtained over 10 simulations. Both al-
gorithms have been compiled with the standard gfortran compiler with similar options. All the
simulations presented in this table have been performed on the same hardware with only 1 core
(Xeon E7-8860 v4 2.2-3.3 GHz) for all the resolutions. The choice of a unique core allows to
carry out a comparison detached from any influence of the parallelization level of the two as-
sociated codes (which, one recalls, have been developed independently). In terms of absolute
comparison between the LBM and VM CPU-times (in seconds), one can conclude from Table 3
that the present implementation of LBM is faster than the present implementation of VM by a
factor of 2 approximately for the finest resolutions. This can be explained by the two respective
algorithms themselves, where the "RHS update” and ”Advection” steps contain more substeps
in VM than in LBM (see Table 2). However, for the reasons explained in section 1.3, these data
are to handle very cautiously and might be essentially considered as indicative.

Resol. N CPU-time LBM CPU-time VM
absolute (sec) ‘ normalized absolute (sec) ‘ normalized
16 0.276 1 1.80 1
32 3.12 11 (x11) 10.72 6 (X6)
64 53.57 194 (x17.5) 116.08 (~ 2 min) 65 (x11)
128 1176.26 (~ 20 min) 4262 (x22) 1921.40 (~ 32 min) 1070 (x16.5)
256 19112.48 (~ 5h 20 min) | 69248 (x16) | 36598.16 (~ 10h 10 min) | 20378 (x19)

Table 3: Comparison of the CPU times required for LBM and VM approaches on the convected eddy test case for the
time range t* € [0, 1]. All simulations are performed on a single processor and the CPU times are given in absolute
values (in seconds) and normalized according to the CPU-time associated to the N = 16 simulation.

2.2. Taylor-Green Vortex

In order to study the effect of numerical dissipation on a fully 3D turbulent and highly docu-
mented test-case, the decaying Taylor-Green vortex (TGV) is now considered. It is a fundamen-
tal benchmark used as prototype for vortex stretching and production of small-scale eddies which
therefore allows to study the dynamics of transition to turbulence. This test-case has been widely
used to study the dissipation errors of numerical schemes or the impact of collision operators in

LBM [68].

For this test-case, the simulations are performed on a 2n-periodic cubic domain Q defined as
0 < x,y,z < 2n, with a Reynolds number equal to Re = 1600. The initialization of the Taylor-
Green vortex is done by setting velocity and pressure variables as follows:

peUS,
P = Pt 6 [cos(22) + 2][cos(2x) + cos(2y)]
u, = Uy sin(x)cos(y)cos(z) 25)
u, = —Uycos(x)sin(y)cos(z)
u, = 0

For the LBM simulation, a peculiar attention has to be made for the initialization of the distribu-
tion functions when the initial velocity gradients are not negligible [69, 70].
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In order to work with non-dimensional quantities, all the displayed quantities are normalized by
an arbitrary length scale L and velocity scale U. From this the non dimensional time is defined
by * = tUs/L and the Reynolds number by Re = Uy, L/v.

2.2.1. Time step definition

For this benchmark, the time steps of each method are set differently by taking advantage of each
algorithm. For VM, the adaptive time step is used whereas the LBM time step is fixed. Thus, in
contrast with the first test-case where both methods were set with the same CFL, this benchmark
will impose different CFL and will highlight the methods for a set of parameter naturally used in
the literature.

All the simulations realized for this test-case are performed in a * € [0,20] time range. Dif-
ferent grid resolutions, denoted N 3 will be studied, namely 643,1283,2563 and 5123. For LBM
computations, the time step is constant and defined by relation (18) (assuming that Ax = 27/N)
and then multiplied by U /L to get dimensionless values. This definition gives the following
dimensionless time steps, with respect to the different resolutions : Afgy ~ 4.8 - 1073, Atjog =
241073, Atrsg ~ 1.2 1073, Ats1o 6.0 - 1074,

Regarding the VM simulations, the time step is adaptive, based on relation (7), namely Af] . <
LCFL

IVulle
step chosen all along VM simulations is defined by :

with LCFL < 1. More precisely, in these TGV computations, the global adaptive time

CFL - Ax LCFL

At — o
[ullS ~ [[Vall%

adapt (26)

= min(Atlg, A cpp) = min(
where n denotes the current iteration and where Afly, refers to the classical Eulerian stability
condition based on the grid size Ax. In the following TGV simulations, the values of CFL and
LCFL numbers will be respectively set to CFL = 0.1 and LCFL = 1/32. The left handside of
Figure 7 shows the temporal evolution this adaptive time step along VM simulations depending
on the different grid resolutions under study. For each resolution, one can clearly distinguish
between 1* = 2.5 and * = 5 the switch from the CFL stability condition to the LCFL one. The
evolution of Az dapt follows the flow dynamics and shows minimum values in the time range cor-
responding to the peak of energy dissipation, at t* ~ 9 (see next subsection for a clear observation
of this peak).

For purpose of comparison, the table located on the right hand-side of Figure 7 reports the number
of time steps required respectively in LBM and VM computations to perform a TGV simulation
until * = 20. In LBM, since At is governed by a CFL condition, the number of total time steps is
successively multiplied by 2 when increasing the grid resolution. In VM, it can be noticed that,
when Af,dap is driven by the LCFL condition, its value at a given resolution is not divided by two
with respect to the previous coarser resolution (as it is the case when the CFL condition governs).
This can be explained by the fact that the LCFL condition is based on velocity gradients, not on
grid step. Thus, the finer is the grid resolution, the better is the evaluation of these gradients and
higher is the gain in terms of total time steps.
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Figure 7: (Left) Temporal evolution of the adaptive time step along VM simulations depending on grid resolution. (Right)
Comparison of number of time steps required to achieve a TGV simulation until * = 20 between LBM and VM.

2.2.2. Time evolution of kinetic energy
This subsection is dedicated to the study of the temporal evolution of the kinetic energy E =

1 dE 1
3 f ||u||2 dQ, the kinetic energy dissipation rate & = I and the enstrophy Z = 3 f ||w||2 dQ.

Q Q

Note that the kinetic energy decays proportionally to enstrophy and & and Z are linked by the

following relation : & = —‘fl—’f = 2vZ, where v denotes the kinematic viscosity of the fluid.

For VM computations, the energy dissipation rate € is reconstructed a posteriori using a second
(E(t+mAtudapl)_E(t_mAtadupl)

- 2mAtagapt

3 in this study to prevent from spurious oscillations. For LBM calculations, the enstrophy Z is

computed from the vorticity for which a second order reconstruction is used.

order time integration scheme (¢ =

), where m is chosen to be equal to
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Figure 8: Kinetic energy decay for Taylor-Green vortex benchmark between * = 0 and r* = 20. (Left) LBM, (Right)
VM.

Figures 8, 9, 10 respectively show the temporal evolution of E, € and Z for LBM (left) and VM

(right) for different grid resolutions. The results are compared to the spectral solution at 5123,

taken as the reference solution [71]. As can be seen, both LBM and VM converge towards the
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Figure 9: Time evolution of kinetic energy dissipation rate & = — ‘i,—f for Taylor-Green vortex benchmark between t* = 0
and t* = 20. (Left) LBM, (Right) VM.
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Figure 10: Time evolution of enstrophy Z = % fn lwl? d© for Taylor-Green vortex benchmark between * = 0 and
t* = 20. (Left) LBM, (Right) VM.

reference solution, for each physical quantity. In particular, both approaches correctly recover
the peak of energy dissipation as well as the peak of enstrophy reached at t* ~ 9 (Figs. 9,
10). However, this convergence behaves in a different way : with LBM, the simulation results
converge from “bottom to top” towards the reference, which illustrates the numerical dissipation
brought by the Lattice Boltzmann method. From the 5123 grid resolution, the numerical diffusion
of E and & becomes negligible (cf Figs. 8, 9) and the LBM solution reaches the spectral solution
with an error of 107, as can be seen on the grid convergence curves, Figure 11, which represent
the L?-norm errors of the physical quantities based on the spectral solution on the time range
t* € [0,20]. As regards enstrophy, which is a second-order-reconstructed quantity in LBM, the
convergence order is, as expected, close to 2 (cf Figs 10 and 11). However the final enstrophy
error reached with the finest mesh remains in the order of 10~3. For the coarse resolution, the
LBM solution is over-dissipated by the grid and the chosen collision model (MRT), despite its
ability to get stable simulation on coarse grids, still overestimates molecular viscosity when
grid step is large. A detailed comparison of LBM collision models on the Taylor-Green vortex
benchmark could be found in [68].

Concerning VM, one can observe on Figures 8, 9, 10 a convergence of the solutions from top
to bottom” and, more specifically, Figures 9 and 10 reveal that VM tend to slightly over-estimate
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Figure 11: Grid-convergence study for Taylor-Green vortex benchmark between * = 0 and #* = 20. The L?-norm errors
of kinetic energy (left), kinetic energy dissipation rate (center) and enstrophy (right) with respect to the spectral solution
are plotted against the grid step.

the enstrophy for under-resolved simulations (this phenomenon is shown and proved in [72]
and can be explained by the antidiffusion mechanisms embedded in the error resulting from the
reconstruction of particle velocity in Vortex methods). As pointed out in the previous section
dealing with the convected eddy, VM is a low dissipative method and even for highly under-
resolved simulations (i.e 64°) it manages to provide a rather correct time-evolution of energy
decay (Fig. 8) and enstrophy (Fig. 10). At the 5123 resolution, VM reaches the spectral solutions
with the same ranges of error than LBM, except for the € quantity (cf center of Fig. 11), which
is only reconstructed at the first order in the present remeshed Vortex method.

Nevertheless, one can globally observe that the VM convergence order is lower than the one of
LBM, regardless of the quantity studied (cf Figs 11). In particular, the enstrophy convergence
order achieved with VM (approx 1.43) is slightly lower than LBM (approx 1.76) whereas the
vorticity w, involved in the enstrophy, represents the primary quantity solved by Vortex methods.
On one side, as mentioned in section 1.1, the heterogeneous construction of the fractional VM
algorithm offers a flexible framework to design arbitrarily a semi-Lagrangian numerical method,
based on previous theoretical works, but on the other hand this heterogeneity makes the a priori
determination of the global order of the method delicate. Numerically, the global order of the
VM grid-convergence turns out to be a bit less than 2, despite the use of 4™ order or spectral
schemes (cf Tab. 2). Some elements like the linear interpolation of the particle velocity in the
Lagrangian transport or the first order evaluation of the integral quantities E and Z can explain
this behavior.

2.2.3. Spectral analysis

Figure 12 shows turbulent kinetic energy spectra obtained with LBM (left) and VM (right). These
spectra are plotted at #* = 12 in order to study the energy cascade throughout the different spatial
scales at a time when the turbulent flow is developed. Note that the ”wavenumber” label on the
x-axis refers to the mean over the unit sphere of all the wavenumbers (k, ky, k), that is to say to
the quantity [k| = /(k? + k2 + k2). For both methods, a cutoff has been applied to the spectra
below the cutoff wavenumber corresponding to the smallest resolved scale (vertical dotted lines).
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One can notice that for the coarsest resolution 64°, LBM slightly overestimates the kinetic energy
in the resolved scales, while the opposite behavior is observed for VM. This confirms the results
depicted in Figure 8.
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Figure 12: Turbulent kinetic energy spectrum for Taylor-Green vortex benchmark at * = 12. (Left) LBM. (Right) VM.
Vertical doted lines refer to the cutoff wavenumbers associated to the smallest resolved scales.

If we now consider the spectra at resolution 256> and 5123, the energy cascade in the inertial
range seems converged for both method. In the dissipation range, it can be seen that LBM tends
to dissipate more energy when going towards the cutoff wavenumber, which confirms the remark
formulated before, stating that VM is globally less dissipative than LBM.

2.2.4. Flow structures

This last subsection relies on a qualitative comparison between the vortical structures obtained in
the LBM and VM solutions. Figures 13 and 14 respectively show the vorticity and velocity norm
of the flow field in the symmetric and periodic half-plane x = 7, at t* = 9 with a 5123 resolution.
As can be seen, at this resolution, the flow structures are significantly comparable between LBM
and VM.

Figure 13: Isocontours of vorticity norm at time t* = 9 and at levels 1,5, 10, 20, 30 obtained with a 5123 resolution on
the periodic and symmetric half-plane x = 7. (Left) LBM. (Right) VM.

An enlargement of the main vortical pattern (delimited by the dotted square in Figures 13 and 14)

is proposed in Figure 15, and despite little discrepancies about the vorticity (left) and velocity

(right) norms, both methods manage to correctly take into account the small scales of the flow.

In particular it is interesting to look at the vorticity isocontours into more details since they bring

most of the crucial information of the Taylor-Green flow. Indeed, at * = 9 the energy dissipation

reaches its maximum (cf Fig. 9) and the coherent structures of the flow start to be destroyed,
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Figure 14: Isocontours of velocity norm at time t* = 9 and at levels 0.1,0.2, 0.4, 0.6, 0.8, 1 obtained with a 5123 resolution
on the periodic and symmetric half-plane x = 7. (Left) LBM. (Right) VM.

leading to the development of the turbulent flow. On Figure 13, the phenomenon of rupture
of the main vortical structures is clearly observable and very similar for LBM and VM. More
precisely, on the left hand-side of Figure 15 one can see that both method manage to recover the
regions of the flow corresponding to vortex tubes (thin elongated structures on the right) which
are associated to strong vorticity and small scales, as well as the sheet-like structure (large “eye-
like” structure on the left) that is associated to strong energy dissipation. The few discrepancies
existing between the two solutions mainly rely on a little spacial shifting, rather than a capacity
of catching the tears of the small scale vortex tubes or the contours of the sheet-like structure.
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Figure 15: Isocontours at time * = 9 with a 5123 resolution on the plane x = . (Left) Superimposition of isocontours of
vorticity norm at levels 1, 5, 10, 20, 30 obtained with LBM (red) and VM (black). (Right) Superimposition of isocontours
of velocity norm at levels 0.1,0.2,0.4,0.6, 0.8, 1 obtained with LBM (red) and VM (black).

3. Flow past a solid cube

The last test case proposed in this paper is the flow past a 3D cube fully immersed in the fluid, for
different regimes. It aims at providing to the present list of benchmarks a significant test where
the treatment of no-slip boundary conditions is investigated and compared for both LBM and
VM methods in the proper methodological context where they are usually applied. First of all, it
has to be noted that, to the authors knowledge, the flow past a 3D cube test-case has been subject
to rather few number of experimental or numerical studies compared to the case of flow past
a surface-mounted cube or flow past a sphere. It therefore represents an interesting non-usual
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benchmark for the present study, characterized in particular by the sensitivity of the numerical
results to the sharp corners of such bluff body. Two different flow regimes will be handled in this
study to directly compare the effects of wall treatment for both methods. The first chosen regime
is at Re = 290, which corresponds to an unsteady and planar symmetric flow [73]. The second
regime of study is at Re = 570, where no symmetry is observed in the wake and for which the
flow becomes fully unsteady [73, 74].

3.1. Boundary conditions

3.1.1. Vortex Method framework

The approach used in the present remeshed VM method to handle the no-slip boundary condition
at the solid cube interface is the Brinkman penalization method. The latter, firstly proposed by
[75] and further developed by [76, 77], is part of the immersed boundary methods. It consists
in extending the fluid velocity inside the body and then to penalize it through an extra term in
the Navier-Stokes equations. This penalization term, added as a forcing term, models the no-slip
boundary conditions and is driven by a penalization factor, which can be related to the effective
porosity of the body. Such approach is therefore fully compatible with the use of FFT-based
evaluations for the computation of the velocity field (see eq. (9)), for any type of body geometry.
The Brinkman penalization method has been widely used in the context of semi-Lagrangian
Vortex methods dealing with complex body geometries, because of its efficiency and simplicity
[16, 18, 78, 79, 80]. For the computation of the drag and lift forces, VM simulations use the
so called momentum change approach based on [81] which gives the force acting on the wall
surface. Some other approaches may also be used to compute the aerodynamic forces in the
context of vortex methods with Brinkman penalization [79], where a Poisson equation is solved
to evaluate the pressure field from the velocity. Concerning the output boundary conditions, the
present VM method uses periodic boundary conditions. In order to prescribe the desired uniform
flow at the inlet as well as proper outlet conditions, an absorption region is added at the outlet (cf
the following subsection 3.2). Then a correction of the velocity field has to be performed in order
to recover the desired flux at the inlet and to ensure a non-zero circulation in the computational
domain. We refer the reader to [78] for further details about these aspects.

3.1.2. Lattice Boltzmann framework

For the lattice Boltzmann simulations, the inflow boundary conditions are set through the equilib-
rium distribution function by imposing a uniform streamwise velocity at the inlet and the outflow
boundary conditions imposes a conservation of the non-equilibrium distribution functions at the
outlet [82]. A sponge zone is used to increase the viscosity at the outlet and damp the outgoing
structures. The shape of the sponge zone is the same as for VM and is described in the next
subsection. For the computation of forces, the pressure is directly integrated on each elementary
surface and projected in each direction to get the normalized coefficients of Tables 5 and 6. The
no-slip condition is imposed with the non-equilibrium bounce-back condition which corrects the
wall output non-equilibrium distributions with their symmetric counterpart from the wall normal
direction [83, 84]. The treatment of no-slip boundary condition with bounce-back is not the only
possibility [85] but could be considered as a standard and efficient way to investigate no-slip
conditions on Cartesian geometries.

3.2. Numerical setup

The study of the flow past a 3D cube is performed for both methods on a uniform Cartesian grid
by imposing a number of n grid points along the cube length D. The size of the computational
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domain is defined in terms of the cube length and setto [-L,, L;1x[-H/2, H/2]1x[-H/2, H/2].
The associated blockage ratio, BR, is defined as the ratio of the cube length and the domain
cross-section, i.e. D/H?. The center of the cube is located at the origin (x,y,z) = (0,0,0) of
the domain. The reference values U, and D are set to unity such that the grid step is defined by
h = D/n. The different grid parameters considered in the cube simulations are summarized in
Table 4, depending on the Reynolds number, and a schematic representation of the computation
domain is given in Figure 16.

n Ny N, N, h Domain BR
Re =290

25 320 128 128 0.04  [-2, 10.8] X [-2.56, 2.56] x [-2.56, 2.56] 3.81%

50 640 256 256 0.02 [-2, 10.8] X [-2.56, 2.56] x [-2.56, 2.56] 3.81%
Re =570

80 1024 512 512 0.0125 [-2, 10.8] x [-3.2, 3.2] x [-3.2, 3.2] 2.44%

Table 4: Grid parameters used for the cube simulation at Re = 290 and Re = 570 for both LBM and VM.

Figure 16: Computational domain, including the outlet sponge zone, for flow past a 3D cube.

For both LBM and VM methods, a sponge zone is added at the outlet of the domain D to pre-
scribe the absorbing boundary condition. The absorption is performed according to the following
one-dimensional smoothing function f defined in the flow direction (i.e. x-direction):

1 if x < x,
| tanh(a(x — x.)) — tanh(a(x, — x.)) .
O =) Ganh(aCe, = x0) - anhat, -z P EEEE @7)
0 if x> x,

where x;,, x. and x, respectively refer to the beginning, the center and the end of the absorption
band at the outlet. The parameter « allows to adjust the steepness of the absorption function f.
In both LBM and VM approaches, one sets @ = 10, x, = L; — D and x, = L, (width equal to
1D), which accounts for less than 8% of the total size, and thus of the total computational cost.
A uniform velocity field Ue = (Moo, Uyoos Uzeo) = (Uwo, 0,0) = (1,0,0) is set at the inlet of the
domain. In order to trigger the instability in a similar way for both methods, a perturbation is
applied during the simulation between t* = 3 and * = 4 on the y component of the velocity,
defined by uye, = 0.1 sin(z(T — 3)). For LBM, the time-step value is defined by (18) imposing
a CFL number based on U, equal to 0.1, and for VM, the time step is adaptive, according to
relation (26), taking CFL= 0.5 and LCFL= 0.125.
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Two Reynolds numbers are investigated here, Re = 290 and Re = 570. One notices that the aim
of this section is not to carry out an exhaustive study of the physics related to this type of flows,
but rather to compare the behavior of two numerical methods based on the same geometrical
setup with boundary conditions usually applied in their proper computational context.

3.3. Results and discussion

Let us first investigate the results for the flow around a cube at Re = 290. As reported in Table 4,
at this regime the simulations are performed for both methods at 2 grid levels, namely with n = 25
and n = 50. The simulations are realized on a total characteristic time of t* = tU,/D = 150.
The mean quantities are averaged during the period from * = 50 to the end of the simulation.
Figure 17 shows the norm of the mean velocity components. The solutions at the two grid levels
are represented in the two orthogonal planes in the streamwise direction of the flow, namely
the XZ and XY planes. These results on mean flows are complemented by Figure 18, giving the
associated streamwise velocity profiles along x and y direction. The first observation that one can
make from these two figures, is that both LBM and VM methods reach with n = 50 the planar
symmetric flow in XZ plane, as expected and reported in literature [73, 74]; indeed, on Figure
17b the mean flows in XZ plane clearly show a symmetry with respect to the centerline of the
wake and the non-planar symmetric wakes in XY plane exhibit comparable isocontours and more
specifically a qualitatively similar ex-centred recirculation zone downstream. On Figure 18-right,
the z-profiles of both methods for n = 50 (solid lines) are also distinctly symmetric. What is also
interesting to notice, is the way the two methods converge to the planar symmetric flow state: as
also highlighted in the two previous test cases of this paper, VM achieves better results at coarser
grid resolution than LBM which fails at n = 25 in computing a planar symmetric flow for the
same grid configuration (see XZ planes on Fig. 17a and the dotted curves on Fig. 18).

If we now focus more precisely on the mean velocity profiles in Figures 18, one can observe a
velocity difference on Figure 18-left where the VM inlet velocity appears to be slightly lower than
the expected far-field velocity, correctly restored by LBM. As a consequence, the levels of Figure
17 are noticeably different in the inlet region for the two methods. These discrepancies may be
explained by the velocity correction performed in VM in order to account for non-periodic flow
in the domain. This correction prescribes the uniform inlet flow rate with an error compared to
the theoretical one based on the desired inlet velocity field (u., = (1,0,0)). However, despite
these differences close to the domain walls, it is interesting to see that the solution close to the
solid boundaries is comparable for LBM (with bounce-back conditions) and VM (with Brinkman
penalization method), which highlights the ability of both methods to treat correctly no-slip
boundary conditions. Among the differences in the obstacle region, one can first remark that
VM results exhibit a slightly thicker recirculation zone induced by a larger detached flow region
near the wall. This is more visible on Figure 18-right where the VM velocity profile is larger
than LBM in the z-direction. Moreover, one can concentrate on the x/D = [-0.5,0.5] and
z/D = [-0.5,0.5] regions in Figure 18, corresponding to the solid cube. At the extremities of
these regions, that is to say at the cube surface, the mean velocity profiles of LBM indicate a 0
value which corresponds to the direct prescription of no-slip boundary conditions in the bounce-
back approach. On the other hand, the profiles obtained with VM indicate that the velocity does
not completely vanish inside the solid cube and at its surface. These non-zero values correspond
to the Brinkman penalization model adopted in the present VM method, which consists, at each
time step, in allowing the flow to enter the solid obstacle and then to penalize it by considering
it as an extremely low permeable region according to a penalization coefficient, denoted 1. The
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LBM VM

(b)n =50

Figure 17: Flow past a cube at Re = 290. Norm of the mean velocity components ( 4 [i:2 + u_y2 + u_yz) in XZ (top) and XY
(bottom) planes for LBM (left) and VM (right). Levels correspond to 20 equispaced values between 0 and 1.4 included.

A-convergence of the Brinkman penalization to real no-slip boundary conditions (u = 0), is
of order 1 [19]. The ability of both methods to correctly handle the boundary conditions, and
thus the flow physics, is also confirmed by Figures 19 where are depicted the norm of the mean
velocity component for flow past a cube at Re = 570. As reported in literature [74], the flow at
such regime is unsteady and the wake does not show any symmetry, which is the result observed
on Figures 19 and 20.

To complement the flow analysis, the two methods are compared in terms of instantaneous vor-
ticity fields in Figure 21. This figure shows the close-up view of the w, isocontours for three
different resolutions at Re = 570 in the XY plane near the solid walls, at #* = 120. The in-
terest of such view is to focus the comparison on the boundary layer region where the flow is
laminar, rather than the wake region which is turbulent and whose analysis at a given time ¢*
strongly depends on the perturbation trigger. One can observe on this figure that the boundary
layer thickness as well as the region of detachment points, located around downstream corners,
are very similar between LBM and VM. The main discrepancy occurs at the upstream cube cor-
ners, where the different boundary conditions adopted by the two methods induce different levels
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Figure 18: Average streamwise velocity profiles for flow past a cube at Re = 290. (Left) Along streamwise direction at
y = 0and z = 0. (Right) Along spanwise direction at x = 0 and y = 0.

Figure 19: Flow past a cube at Re = 570 with n = 80. Norm of the mean velocity components (J@z + u_y2 + u—yz) XZ
(top) and XY (bottom) planes for LBM (left) and VM (right) (same isocontour levels as Fig. 17).

of spurious vorticity at these sharp edges. However, the spurious solution in this region turns out
to be attenuated for both methods when refining the mesh; with n = 80 the thickness and shape
of the upstream boundary layer are very comparable.

Regarding the evaluation of flow characteristics, Tables 5 and 6 report the mean drag, lift and
side-lift coefficients (cp, €1, Cs), the recirculation length (/) and the Strouhal number (St =
fD/U,) obtained at Re = 290 and Re = 570 by LBM and VM as well as those of selected
references in literature. Concerning the recirculation length, it is defined as the axial distance,
along the centerline of the wake, between the center of the cube and the point where the mean
streamwise component of the velocity is zero. First of all, it has to be noted that the cube
benchmark is not as widely studied in literature as the sphere benchmark, which explains the
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Figure 20: Average streamwise velocity profiles for flow past a cube at Re = 570. (Left) Along streamwise direction at
y = 0and z = 0. (Right) Along spanwise direction at x = 0 and y = 0.

rather few quantity of reference works about such flow. In terms of flow physics, and as explained
in [74], it is important to mention that the values of ¢ for sphere and cube differ as the Reynolds
number increases: once the Reynolds number has reached the unsteady and planar-symmetric
regime (ie Re 2 276), the ¢p for cube increases with the Reynolds number, contrary to the one
of the sphere. One can see in Table 5 (Re = 290) and Table 6 (Re = 570) that this statement
is verified both by LBM and VM. In terms of comparison, in Table 5, the ¢p results of LBM
and VM are in good accordance with the evaluations of Haider & Levenspiel [86]. On the other
hand, the results of Saha [73] and Khan et al. [74] predict a lower drag coefficient. Concerning
the Strouhal number at Re = 290, the LBM and VM results are rather close to the experimental
result of Klotz et al. [87], standing around 0.12, whereas the values reported by Saha and Khan
et al. are lower than 0.1. These differences can be explain by the different numerical setup used
in the studies with respectively 30 and 20 points along the cube for Saha and Khan et al. and on
the other hand a different blockage ratio of the computational domain; indeed, the present BR for
simulations at Re = 290 is equal to 3.81% against 0.44% in Khan et al. simulations and 0.51%
for Saha. The present BR is closer to the one of Klotz ef al. (1.44%) which may explain the
closer results in terms of Strouhal number.

It has also to be noted that both LBM and VM methods recover a quasi-zero ¢g value at Re = 290,
which is consistent with the fact that the wake is symmetric in the XZ plane at such regime. The
sign of the lateral and side lift coefficients has been removed due to the arbitrary asymmetry
direction chosen by the flow. Indeed, the asymmetry balance can change due to infinitesimal
computing artefacts without altering the flow behavior and topology. Finally one can note that
the recirculation length is slightly lower for LBM results. Indeed, the profiles of Figure 18-
left show that the LBM mean streamwise velocity in the recirculation area starts to increase
earlier than in the VM results. As mentioned previously, this could be an effect of the prescribed
inflow/outflow boundary conditions for the two methods.
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Figure 21: w, vorticity isocontours for flow past a cube at Re = 570 at t* = 120. Levels correspond to 10 equispaced
values between -10 and 10 with additional contours at 0.5 and +0.25, where dashed lines represent negative values.
Top(red) LBM and Bottom(Black) VM.

4. Conclusion

In this work an algorithmic and numerical comparative study of a Lattice Boltzmann Method
(LBM) and a remeshed Vortex method (VM) was presented in the context of three dimensional
incompressible flows. Both approaches belong to families of methods where the flow is not con-
sidered and discretized in a macroscopic way and where the notion of particles is a common
aspect. In Lattice Boltzmann Methods, the local algorithms and low stencil schemes (lattice)
contribute to their efficiency and allow one to easily implement and parallelize them. Regarding
semi-Lagrangian (remeshed) Vortex methods, they couple optimally Lagrangian and Eulerian
schemes in a fractional step algorithm, which contributes to their flexibility and specificity. In
particular, the Lagrangian treatment of the advection term enables the use of an adaptive Az, thus
reducing the total number of time steps within a whole simulation.

The two methods were compared with respect to each others and validated with other experimen-
tal/numerical results in literature for three reference test cases: the advection of a simple vortex,
the Taylor Green vortex and the flow around a cube in a free domain. The first observation for the
first two benchmarks was the low dissipative and dispersive behaviour of the present remeshed
Vortex method, especially for coarse grids, which offers better results for low resolutions. The
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¢p L Cs [, St
] 0.783 0.064 0.0 - 0.094
Klotz et al. [87] - - - 2.63  0.128 (Re = 292)
Khan et al. [74] 0.83 0.0053 0.01646 2.50 0.098 (Re = 300)
Haider & Levenspiel [86] 1.08 - - - -
Present LBMn =25 1.093 0.136 0.039 2.20 0.120

Saha [73

n=50 0900 0.073 4.31-10* 250 0.120
Present VM n =25 0985 0.066  0.0041 2.64 0.120

n=50 1003 0088 8.14-10° 272 0.120

Table 5: Comparison of mean force coeflicients, mean recirculation length and Strouhal number for flow past a cube at
Re = 290.

¢p ‘L Cs I

Khan et al. [74] 0.91 0.0576  0.103 -

Haider & Levenspiel [86] 1.14 - - -
Present LBM (n = 80) 1.121 0.005 0.011 3.13
Present VM (n = 80) 1.014 0.003 0.013 3.26

Table 6: Comparison of mean force coefficients, mean recirculation length for flow past a cube at Re = 570.

second main observation relies on the fact that the present LBM offers a better accuracy at fine
grid resolutions and a higher order of convergence, which also aligns with the conclusions al-
ready made in the literature as previously described.

For the cube test case, which is a stiff numerical problem with sharp edges and singularities,
both LBM and VM were used with their own boundary conditions in order to illustrate a typical
use of both algorithms in the context of a more complex and applied benchmark. Once again,
the ability of VM to better compute the expected flow behavior on coarse grids was confirmed.
For higher resolved grids the results of both methods show a good qualitative agreement, the
quantitative discrepancies being mainly due to the different treatment of inlet/outlet and no-slip
boundary conditions within the two methods.

All the results presented in this study should be interpreted in the specific context of the chosen
models, which have been mostly tested and compared in terms of global and integral quanti-
ties. Even if some improved versions of these models exist in literature, a deeper analysis of
local behaviors should increase the understanding of each item of the two presented approaches.
Furthermore, in order to fully take advantage of the intrinsic performances of each method, a
hybrid algorithmic implementation should be considered as a target for future developments in
the framework of this family of numerical methods.
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