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a b s t r a c t

Computational aeroacoustic (CAA) simulation requires accurate schemes to capture the
dynamics of acoustic fluctuations, which are weak compared with aerodynamic ones. In
this paper, two kinds of schemes are studied and compared: the classical approach based
on high order schemes for Navier–Stokes-like equations and the lattice Boltzmann method.
The reference macroscopic equations are the 3D isothermal and compressible Navier–
Stokes equations. A Von Neumann analysis of these linearized equations is carried out to
obtain exact plane wave solutions. Three physical modes are recovered and the corre-
sponding theoretical dispersion relations are obtained. Then the same analysis is made
on the space and time discretization of the Navier–Stokes equations with the classical high
order schemes to quantify the influence of both space and time discretization on the exact
solutions. Different orders of discretization are considered, with and without a uniform
mean flow. Three different lattice Boltzmann models are then presented and studied with
the Von Neumann analysis. The theoretical dispersion relations of these models are
obtained and the error terms of the model are identified and studied. It is shown that
the dispersion error in the lattice Boltzmann models is only due to the space and time dis-
cretization and that the continuous discrete velocity Boltzmann equation yield the same
exact dispersion as the Navier–Stokes equations. Finally, dispersion and dissipation errors
of the different kind of schemes are quantitatively compared. It is found that the lattice
Boltzmann method is less dissipative than high order schemes and less dispersive than a
second order scheme in space with a 3-step Runge–Kutta scheme in time. The number
of floating point operations at a given error level associated with these two kinds of
schemes are then compared.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

Computational aeroacoustic (CAA) has become an important subject since the advancement of powerful and efficient
computers. The main purpose of CAA is to predict the near- and far-field noise radiated by immersed solid bodies or turbu-
lent flows [8,29] via accurate and reliable simulations. Therefore, CAA solvers must be able to capture compressibility effects
to correctly estimate the pressure fluctuations generated by the flow. They also must be accurate enough to propagate the
. All rights reserved.
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information from the source region to the far-field. In this paper, we focus on the propagative capabilities of numerical
schemes. Because in many practical cases the acoustic fluctuations are very weak compared with aerodynamic ones, prop-
agation of acoustic waves in CAA necessitates high order accurate schemes. The spatial derivatives are classically approxi-
mated using high order finite-differences in space while time integration is performed thanks to a Runge–Kutta
algorithm. Following the idea of Tam and Webb [30] dealing with optimizing the schemes by minimizing the dispersion
and dissipation error, most of classical high order schemes have been revisited in the past few years [1,3]. Compact schemes
were also studied [17] but we will focus on explicit schemes in this study.

Recently, the lattice Boltzmann method [6,21], has been studied for aeroacoustic purposes [4,7,24]. The main advantage
of such a method is its ability to approximate the weakly compressible 3D Navier–Stokes equations with a simple algorithm,
which is well suited for parallel computing. The lattice Boltzmann method is based on statistical mechanics and relies on
microscopic quantities instead of macroscopic ones. It has been shown [7,20,21,24] that the lattice Boltzmann model is a
second order scheme that could provide good qualitative results [4,24,31]. This must be pointed out because a second order
scheme is theoretically unadapted for CAA requirements. In this paper, we aim at rigorously comparing the lattice Boltzmann
method with the classical schemes in terms of aeroacoustic capabilities. Some accuracy analyses of the lattice Boltzmann
method have been made using Taylor series expansion [18,23] and some qualitative comparisons with other CFD methods
have been performed [10,11]. For aeroacoustic and wave propagation purposes, the Von Neumann analysis is more conve-
nient and has been used for stability analysis [28]. Let’s note that this well known tool has been recently revisited and ex-
tended [27]. The idea is here to apply this analysis to the classical high order schemes and to the lattice Boltzmann method in
order to quantify the aeroacoustic capabilities of each scheme. This analysis consists of looking for plane wave solutions of
the linearized equations. In the limit of linear acoustics, this analysis is very efficient to recover the dispersion and dissipa-
tion relation. Indeed, plane wave solutions yield the relation between the wavenumber k and the wave pulsation x. Each
scheme has its own dispersion and dissipation relations which will be used as a reference for their comparison.

In the first section, the linearized Navier–Stokes equations are presented and their exact plane wave solutions are com-
puted. The principal characteristics of the classical high order schemes are then discussed and their Von Neumann analysis is
described. Here, we point out that effects of both space and time discretization are taken into account at the same time. Then
we present the lattice Boltzmann models and the associated key parameters. Three different models are presented: the dis-
crete velocities Boltzmann equation (DVBE) without any space and time discretization, the classical lattice Boltzmann model
(LBM–BGK) and the multiple relaxation time model (LBM–MRT). The Von Neumann analysis of these models is performed
considering the linearized lattice Boltzmann equations. Results and comparisons are presented in the last section. The dis-
persion and dissipation relations of the different model are displayed and the errors committed by the different schemes are
discussed.

2. Compressible linearized Navier–Stokes equations in 3D

2.1. Exact plane wave solutions

In this section, we look for plane wave solutions of the 3D linearized Navier–Stokes equations to get the theoretical dis-
persion and dissipation relations for a plane wave propagating in a perfect gas. The obtained solutions will be used as ref-
erences for the dispersion and dissipation analysis of the different schemes. First, the linearization of all the quantities U is
done around the mean flow as U ¼ U0 þ U0 assuming that U0 has a small amplitude and that U0 is uniform in order to sup-
press gradient effects. Moreover, we will consider an isothermal flow to be consistent with the lattice Boltzmann theory. This
hypothesis will be further explained in the next section and restricts the analysis to weakly compressible fluids where the
Mach number is still small enough (Mach < 0:4). Then, the energy equation will be linearized considering the internal en-
ergy. This equation can be written in the isothermal configuration as
@qe
@t
þ @qeui

@xi
¼ �p

@ui

@xi
þ sij

@ui

@xj
ð1Þ
where sij the local stress tensor. It is to be noticed that the last term in the right-hand side of Eq. (1) is a 2nd order term and
will not appear in the linearized equation. The perfect gas internal energy qe ¼ p

c�1 will be used to complete the equations.
Under these hypotheses, the 3D linearized Navier–Stokes equations can be written in the following conservative form:
@U0

@t
þ @

@x1
½E0e � E0v � þ

@

@x2
½F0e � F 0v � þ

@

@x3
½G0e � G0v � ¼ 0 ð2Þ
where U0 is the unknown vector, bfE0e; F
0
e;G

0
e the Eulerian flux and E0v ; F

0
v ;G

0
v the viscous flux given by
U0 ¼

q0

q0u0

q0v 0

q0w0

p0

0BBBBBB@

1CCCCCCAE0e ¼

q0u0 þ q0u0

p0 þ u0q0u0

u0q0v 0

u0q0w0

u0p0 þ cp0u0

0BBBBBB@

1CCCCCCAF0e ¼

q0v0 þ q0v 0

v0q0u0

p0 þ v0q0v 0

v0q0w0

v0p0 þ cp0v 0

0BBBBBB@

1CCCCCCAG0e ¼

q0w0 þ q0w0

w0q0u0

w0q0v 0

p0 þw0q0w0

w0p0 þ cp0w0

0BBBBBB@

1CCCCCCA
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E0v ¼

0

s011

s012

s013

0

0BBBBBBBB@

1CCCCCCCCA
F0v ¼

0

s021

s022

s023

0

0BBBBBBBB@

1CCCCCCCCA
G0v ¼

0

s031

s032

s033

0

0BBBBBBBB@

1CCCCCCCCA

where s0 is the linearized stress tensor. We will see in the following that a non-zero bulk viscosity coefficient has to be taken
into account. The linearized stress tensor will be written in its general form
s0ij ¼ q0m
@u0i
@xj
þ
@u0j
@xi
� 2

3
@u0k
@xk

dij

� �
þ q0n

@u0k
@xk

dij ð3Þ
where q0n ¼ g corresponds to the bulk viscosity coefficient. Eq. (2) being a linear equation, it can be written in a matricial
form
@U0

@t
þME

@U0

@x1
þMF

@U0

@x2
þMG

@U0

@x3
¼ 0 ð4Þ
where ME;MF and MG are matrices given in the Appendix. We can now look for plane wave solutions of Eq. (4) which sug-
gests that vector U0 has the following form:
U0 ¼

q̂0

q0û0

q0v̂ 0

q0ŵ0

p̂0

0BBBBBB@

1CCCCCCAexp½iðk:x�xtÞ� ð5Þ
assuming that q̂0; û0; v̂ 0; ŵ0 and p̂0 are complex values. Injecting Eq. (5) in Eq. (4) induces a simplification in the derivative
terms (@=@xj ! ikj and @=@t ! �ix) which leads to the general eigenvalue problem:
xU0 ¼MNSU0 ð6Þ
with MNS ¼ kxME þ kyMF þ kzMG. Then, analytical solutions of this equation are found to be:
x1 ¼ k � u0 � ijkj2Nþ jkjc0 1� jkjN
c0

� �2
� �1=2

x2 ¼ k � u0 � ijkj2N� jkjc0 1� jkjN
c0

� �2
� �1=2

x3 ¼ k � u0 � i j kj2m

x4 ¼ x3

x5 ¼ k � u0

8>>>>>>>>>>>>><>>>>>>>>>>>>>:
ð7Þ
with N ¼ 2
3 mþ 1

2 n and u0 ¼ ½u0;v0;w0�. These five modes correspond to the following three different physical modes intro-
duced by Chu and Kovasznay [15] to analyze weak compressible turbulent fluctuations (see [26] for an exhaustive
description):

(1) x1 and x2 (in the following x�) denotes the acoustics mode propagating with velocity c� ¼ ju0jcosðdku0Þ�
c0½1� ðjkjNc0

Þ2�1=2 and dissipation rate of �Njkj2.
(2) x3 ¼ x4 ¼ xT corresponds to the shear mode (or vorticity mode) that propagates at speed cT ¼ ju0jcosðdku0Þ and dis-

sipation rate �mjkj2.
(3) x5 corresponds to the entropy mode. Because of the isothermal hypothesis, this mode corresponds to a none-dissipa-

tive wave propagating with the shear mode.

For our study, the transport coefficients will be set to their classical values in air: c0 ¼ 340 m=s and m ¼ 1:510�5 m2=s. It
should be noticed that the non-dimensional number S ¼ jkjNc0

can be written in the form S ¼ j~kjNc0Dx with ~k ¼ 2p
Nppw

where Nppw is
the number of grid points per wavelength. For the maximum value of ~k ¼ p which correspond to two points per wavelength
and for the case of a zero bulk viscosity coefficient: N ¼ 2

3 m, S2 is still very small (logðS2Þ ¼ �2logðDxÞ � 14) for the consid-
ered values of Dx. Therefore, it will be neglected in the following.

The solutions (7) describe the behavior of a linear propagative phenomenon predicted by the 3D isothermal Navier–
Stokes equations. We will use these modes as a reference in the following to study the effect of different space and time dis-
cretization on these solutions.
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2.2. Space and time discretization

Numerical simulation needs to evaluate the derivative terms with a discrete operator. In CAA, the computation of the
acoustic field is classically performed using high order schemes in both space and time. These schemes have been actively
studied in the past few years. In this work, we will consider the explicit schemes [30], but implicit schemes can also be used
for acoustic propagation [17]. The most classical approach is to use finite-differences for space and Runge–Kutta algorithms
for time.

2.2.1. Space discretization
A general approximation of the spatial derivatives by a centered 2N þ 1 point stencil finite-difference scheme for a given

quantity U can be written as
@U
@xi
ðx0

i Þ ¼ Dxi
ðx0

i Þ ¼
1

Dxi

XN

j¼�N

ajUðx0
i þ jDxiÞ ð8Þ
where aj are the coefficients related to a given finite-difference scheme. The standard coefficients are computed to match the
Taylor series expansion of the spatial derivatives up to a certain order of accuracy. Other families of coefficients are com-
puted to minimize the dispersion error. Such schemes are called DRP for ‘‘dispersion relation preserving”. The first DRP
schemes were developed by Tam and Webb in [30] and were followed by other families of schemes using different error
criteria. In the following, the optimized 6th order Bogey scheme [3] will be used. We want to highlight here that the theo-
retical order of such a scheme, in terms of taylor series, is not strictly equal to six. Indeed, the coefficients of the scheme are
optimized for dispersion and does not match those of the taylor series expansion. Thus, the order is slightly less than six.
However, for convenient reasons, we will refer to this scheme as a 6th order one in the following. Moreover, it should be
noticed that centered finite-differences are not dissipative and may yield numerical instabilities. For this reason, they are
often supplemented by spatial filters to damp the instabilities. In this paper, we will not take these filters into account.

2.2.2. Time discretization
The time integration is classically done with Runge–Kutta algorithms for a differential equation of the form:
@U
@t
¼ FðUÞ ð9Þ
A p-stage Runge–Kutta algorithm can be expressed, if F is a linear function, by the following form:
Unþ1 ¼ Un þ
Xp

j¼1

cjDt jF jðU nÞ ð10Þ
where Fj denotes the multiple composition of function F such as: F2ðUÞ ¼ FðFðUÞÞ. The coefficients cj are chosen to match the
Taylor series of the time derivative in their classical form, or to minimize the dispersion and dissipation errors [1].

2.2.3. High order schemes dispersion and dissipation relation
In the classical approach, dispersion and dissipation are studied separately for space discretization and time integra-

tion. Space discretization yields a relation between the exact wavenumber kDx and the simulated one k�Dx whereas time
integration gives a relation between the exact pulsation xDt and the simulated one x�Dt. For our study, we propose to get
the dispersion and dissipation relations for the full discretization. This approach is necessary for the comparison with lat-
tice Boltzmann schemes in which the space and time discretizations cannot be distinguished (see Section 3). In order to
achieve these relations for the 3D linearized Navier–Stokes equation, we have to look for plane wave solutions of Eq. (4)
discretized in space and time. Applying the same analysis as in 2.1 and writing Eq. (4) in the form (9) we get the following
system:
e�ixUn ¼ Un þ
Pp
j¼1

cjDtjFjðUnÞ

FðUnÞ ¼ �MEUn 1
Dx1

PN
j¼�N

ajeijk1Dx1 �MFUn 1
Dx2

PN
j¼�N

ajeijk2Dx2

�MGUn 1
Dx3

PN
j¼�N

ajeijk3Dx3

8>>>>>>>>>><>>>>>>>>>>:
ð11Þ
Considering a uniform mesh with Dx1 ¼ Dx2 ¼ Dx3 ¼ Dx, and expressing function F as FðUnÞ ¼ ðc0=DxÞKUn where K is a ma-
trix given in Appendix, Eq. (11) thus leads to the general eigenvalue problem:
e�ixUn ¼ ½Iþ
Xp

j¼1

cjðCFLÞjKj�Un ¼MNS
d Un ð12Þ
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where I is the identity matrix and the CFL number is defined by CFL ¼ c0
Dt
Dx. It should be noticed that the coefficient Dx is

taken from the expression of the derivative approximation to make the CFL number appearing in the expression. Therefore,
Dx appears in the expressions of matrices ME;MF and MG. For the computations, the coefficient Dx will be taken equal to one
without loss of generality. Indeed, because the CFL number is set to a constant value, Dx is an arbitrary parameter. The dis-
persion relation of the discretized linearized Navier–Stokes equations is obtained with the solutions of Eq. (12). The bulk vis-
cosity is taken equal to zero so that N becomes N ¼ 2

3 m. In such a case the reference solutions (7) becomes:
Table 1
Definiti
column
column

Case

1a
1b
2a
2b
3a
3b
x� ¼ jkjðju0jcosðdku0Þ � c0Þ � 2
3 ijkj2m

xT ¼ jkjju0jcosðdku0Þ � ijkj2m

8<: ð13Þ
The solutions of Eq. (12) depend on both space and time discretizations. Table 1 summarizes the different tested cases, indi-
cating the order of the finite-difference discretization and the number of steps for the Runge–Kutta algorithm. The letter ‘‘o”
denotes optimized DRP schemes. The last three columns refer to the symbol used to plot the solutions for the different
modes.

Fig. 1 compares the solutions of cases 1, 2 and 3 with the exact solutions (7) obtained in Section 2.1. In classical ap-
proaches, the curves always represent the evolution of k� as a function of k for the space discretization and x� as a function
of x for the time discretization. In our study, because the influence of space and time discretization are taken into account in
the same time, we chose to represent directly the evolution of x� versus k. For each case, the acoustic modes are clearly more
dissipated than the shear mode. The CFL number for these results has been taken to 0.57 to match the lattice Boltzmann CFL
(see Section 3). This value refers to the CFL number computed with the sound speed: CFLac ¼ c0

Dt
Dx and induces a CFL number

relative to the mean flow: CFLshear ¼ MaCFLac where Ma is the Mach number Ma ¼ U0=c0. For the configurations without mean
flow, the CFLshear vanishes. In a general way, and for subsonic flow, we have CFLshear < CFLac. This explains that the acoustic
modes are always more dissipated than the shear mode.

3. Boltzmann models

In this section, the idea is not to explain the lattice Boltzmann theory in details but to expose the main ideas and the
hypothesis useful for our study. Then we will develop the procedure to derive the theoretical dispersion of the lattice Boltz-
mann schemes.

3.1. Continuous Boltzmann equation

The continuous Boltzmann Eq. (14) comes from statistical mechanics and hold on statistical quantities instead of macro-
scopic quantities:
@f
@t
þ c

@f
@xi
¼ @f

@t

� �
coll

ð14Þ

@f
@t

� �
coll

¼ �1
s
½f � f eq� ð15Þ
where f ðx; c; tÞ is the single-particle distribution function and c the microscopic particle velocity. A Chapman–Enskog pro-
cedure [5] of the continuous Boltzmann equation with the BGK [2] collision operator (15) can recover the compressible Na-
vier–Stokes equations using the definition of momentums:
q ¼
Z
R3

fdc ð16Þ

qu ¼
Z
R3

cfdc ð17Þ
ons of tested cases. The ‘‘Space” column indicates the finite-differences schemes order. The 6th order corresponds to the Bogey scheme [3]. The ‘‘Time”
indicates the number of steps for the Runge–Kutta algorithm. The 6-step optimized Runge–Kutta has been proposed by Berland et al. [1]. The last three

s indicate the symbols used to plot Figs. 1, 8 and 9.

Space Time Mach Ac + Ac � Shear

2nd Order 3-step 0.0 4 5 �

0.2
Tam and Webb o 3-step 0.0 + � �

0.2
6th Order o 6-step o 0.0 q �

0.2
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Fig. 1. Real and imaginary part evolution of x for the linearized Navier–Stokes equations: — Exact solutions. (a and b): Ma ¼ 0:0, (c and d) Ma ¼ 0:2.
Captions given in Table 1.
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3.2. Discrete velocity Boltzmann equation

He and Luo [13] have shown that the continuous Boltzmann–BGK equation could be solved for some discrete points of the
velocity space representing the lattice if the equality between continuous and discrete momentums were satisfied. Then, Eq.
(14) yields the discrete velocity Boltzmann equation (DVBE):
@fa
@t
þ ca;i

@fa
@xi
¼ �1

s
fa � f eq

a

� 	
ð18Þ
The discrete velocity models are computed with a Gauss–Hermite quadrature approximation of the equilibrium distribution
function. This procedure [13] allows for the computations of isothermal models only. In this case, the development of the
third order momentum implies the bulk viscosity coefficient to become [9]: n ¼ 2=3m. The most popular velocity-model in-
volves 19 discrete velocities in 3D (D3Q19). This model will be used in our study. However, it can be shown [22] that the
restriction to 19 discrete velocities modifies the strain rate tensor, leading to
sij ¼ qm
@ui

@xj
þ @uj

@xi

� �
� s @quiujuk

@xk
ð19Þ
The cubic term OðM3
aÞ restricts lattice Boltzmann simulations to small Mach numbers. To fully describes the D3Q19 velocity

model, the equilibrium state must be defined through the equilibrium distribution function derived from the Hermite poly-
nomial expansion of the Maxwell–Boltzmann equilibrium truncated to the second order:
f eq
a ðx; tÞ ¼ qxa 1þ u:ca

~c2
0

þ ðu:caÞ2

2~c4
0

� juj
2

2~c2
0

 !
ð20Þ
where ~c0 ¼ 1ffiffi
3
p is the adimensional sound speed and xa the weighting factors. The macroscopic quantities q and u can be

expressed with the discrete momentums:
q ¼
X

a
fa ð21Þ

qu ¼
X

a
cafa ð22Þ
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and the viscosity coefficient is given by
~m ¼ ~c2
0~s ð23Þ
As in Sections 2.1 and 2.2.3, we want to look for plane wave solution of Eq. (18). The approach is the same but the linear-
ization will be done on the distribution functions, considering a uniform mean part f 0

a and a fluctuating part f 0a such as
f 0a ¼ Aaexp½iðk:x�xtÞ� ð24Þ
The non-linear terms of the Boltzmann equations are contained in the equilibrium distribution function (Eq. 20). By using a
Taylor expansion of this function, we can write:
f eqðf ð0Þa þ f 0aÞ ¼ f eq;ð0Þ
a þ @f eq

a

@fb
jfb¼f ð0Þ

b
� f 0a þ oðf 02a Þ ð25Þ
The difficulty is to evaluate the derivation of the compressible equilibrium distribution function. The exact expression is
found using the mathematical software Maple. Applying this analysis to Eq. (18), we get the linear equation:
ixf 0 ¼ MDVBEf 0 ð26Þ
with f 0 the vector of the fluctuating part of the distribution functions and MDVBE is a matrix defined in the Appendix. In 2D,
Luo [16] evaluated the eigenvalues using successive approximations in k. In our case, we use a linear algebra library (LA-
PACK) to solve the eigenvalue problem on the 19� 19 matrix MDVBE. This eigenvalue problem gives a relation between x
and the eigenvalues of the matrix MDVBE. These values depend on three parameters which are, the relaxation time s, the prop-
agation direction held by vector k½kx; ky; kz� and the mean flow u0½u0;v0;w0�. Thus, by this result, we get the dispersion and
dissipation relation with ReðxÞ and ImðxÞ. The bulk viscosity for the Boltzmann scheme is taken to n ¼ 2

3 m so that N ¼ m. The
reference solutions (7) thus become:
x� ¼ jkjðju0jcosðdku0Þ � c0Þ � ijkj2m
xT ¼ jkjju0jcosðdku0Þ � ijkj2m

(
ð27Þ
Fig. 2 displays the evolution of the different modes for the discrete velocity Boltzmann model with, k ¼ ½kx;0;0�; ~s ¼ 0:0025
and u0 ¼ ½0;0;0:2c0�. Here, the relaxation time has been chosen to match the value of the shear relaxation time given in [10]
for the MRT model. This choice will be justified in the following for the comparison between MRT and BGK model. The three
physical modes predicted by the theory and described by Eq. (27) are recovered in the Boltzmann results of Fig. 2. The DVBE
curves match perfectly the exact dispersion.

However, eventhough DVBE predicts the exact dissipation without mean flow (Ma ¼ 0:0), an error appears in the DVBE
dissipation for a non-zero mean flow. This error is the direct effect of the OðM3

aÞ non-physical term of Eq. (19). This can
be verified by adding this term in the Navier–Stokes analysis of Section 2.1. In this case, the matrices ME;MF and MG are mod-
ified and the solutions (7) of the eigenvalue problem (6) take the form:
x� ¼ k � u0 � ijkj2½N� 3
2 su2

0� � jkjc0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þPðMaÞ

p
xT ¼ k � u0 � i j kj2½m� su2

0�

(
ð28Þ
where PðMaÞ ¼ 3sNjkj2M2
a � 3

4 ½sjkjc0�2M4
a þ isjkjc0M3

a . The solutions (27) are recovered if the mean flow is set to zero. Fig. 3
shows the ratio between the numerical dissipation and the theoretical dissipation obtained with solutions (27) and (28).

We can note that the dissipation error does not depends on k and is the direct ratio between the imaginary parts of solu-
tions (28) and (27). This ratio can be written as follows:
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rT ¼ 1� ~s~U2
0

~m ¼ 1�M2
a

r� ¼ 1� 3~s~U2
0

2~m � e ¼ 1� 3
2 M2

a � e

8<: ð29Þ
where e ¼ c0
m I

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þPðMaÞ

k2

q� �
. If we focus on the circles of Fig. 3, we note that the dissipation error disappears with solutions (28).

This means that expression (28) represents the exact analytical dispersion relation of the discrete velocity Boltzmann
equation.

Here, we have shown that the velocity discretization had no influence on the dispersion and that the dissipation error was
linked to the error term added in the strain rate tensor (19). We can now focus on the influence of space and time discret-
ization by studying the lattice Boltzmann models.

3.3. The lattice Boltzmann models

3.3.1. The LBM–BGK model
Historically, the lattice Boltzmann model has been developed from lattice gas models [6,21]. Here we present the ‘‘a pri-

ori” construction of the model introduced recently [13]. The so-called lattice Boltzmann equation can be obtained by inte-
grating Eq. (18) along the ca characteristic:
faðxþ caDt; t þ DtÞ � faðx; tÞ ¼ �
1
s

Z Dt

0
½faðxþ cas; t þ sÞ � f eq

a ðxþ cas; t þ sÞ�ds ð30Þ
By evaluating the integral with the trapezoidal method and with the variable change [9]:
gaðx; tÞ ¼ faðx; tÞ þ
Dt
2s
ðfaðx; tÞ � f eq

a ðx; tÞÞ ð31Þ
we obtain the lattice Boltzmann equation on ga:
gaðxþ caDt; t þ DtÞ ¼ gaðx; tÞ �
Dt
sg
½gaðx; tÞ � geq

a ðx; tÞ� þ OðDt3Þ ð32Þ
with sg ¼ sþ 1
2 and geq

a ¼ f eq
a . It should be noticed that the construction of Eq. (32) enforces the space and time discretization

to be linked by the relation:
Dt ¼
~c0Dx

c0
ð33Þ
This link between space and time discretization is an important feature of the lattice Boltzmann method and enforces the CFL
number (c0Dt=Dx) to be the same for each simulations (CFL ¼ ~c0).

3.3.2. The LBM–MRT model
The multiple relaxation time model [10,16], has been presented recently and is an alternative to the standard BGK model.

The idea is not to present this model in details but to summarize the main features which are relevant for our purposes. The
MRT model uses a different relaxation time for each momentum. The number of momentums must be equal to the number
of discrete velocities. This constraint introduces a correspondence matrix P between the distribution function vector and the
momentum one. The collision step of the algorithm must be carried out in the momentum space, whereas the propagation
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step is done in the physical space. The relaxation time in the collision term of Eq. (18) is then replaced by a diagonal matrix S
containing the different relaxation times. This model allows us to control independently the relaxation of the different mo-
ments. The equation of such a model can be written as
Fig. 4.
and she
gðxþ c; t þ 1Þ ¼ gðx; tÞ � P�1S½mðx; tÞ �meqðx; tÞ� ð34Þ
where m is the momentum vector such as m ¼ Pg and S defined as follow:
S ¼ diag½0; s1; s2; 0; s4; 0; s4;0; s4; s9; s10; s9; s10; s13; s13; s13; s16; s16; s16� ð35Þ
where si ¼ 1=si. In the following, the relaxation times will be taken from [10]: s1 ¼ 0:6098; s2 ¼ 0:6494; s4 ¼
0:5264; s9 ¼ s10 ¼ s13 ¼ s16 ¼ 0:5025. Moreover, in classical MRT model the equilibrium distribution function is quite differ-
ent than its Eq. (20) form and is similar to an incompressible model [14]. From this, the classical MRT model evaluates vector
meq with:
meq ¼ Pfeq ð36Þ
In this work, we will study the acoustic behavior of the MRT model with an equilibrium distribution function defined by Eq.
(20). The viscosity coefficients are defined as follow:
m ¼ 1
3 s9 � 1

2

� �
n ¼ 2

9 s1 � 1
2

� �(
ð37Þ
3.3.3. Theoretical dispersion and dissipation relations of the lattice Boltzmann models
To get the dispersion relation of the lattice Boltzmann models, the analysis is based on Eqs. (32) and (34). The lineariza-

tion is made on the ga quantities and the linear equilibrium is the same than in Section 3.2. Then we get the linear equation
for the LBM–BGK model (38) and for the LBM–MRT model (39):
e�ixg0 ¼ MBGKg0 ð38Þ
e�ixg0 ¼ MMRTg0 ð39Þ
These new eigenvalue problems are solved to get the dispersion and dissipation relations. Figs. 4 and 5 compare the disper-
sion and dissipation evolution of the Lattice Boltzmann models to the theoretical ones which take the form:
x� ¼ jkj½ju0jcosðdku0Þ � c0� � ijkj2N
xT ¼ jkjju0jcosðdku0Þ � ijkj2m

(
ð40Þ
where N ¼ m for the LBM–BGK model and N ¼ 2
3 mþ 1

9 ðs1 � 1
2Þ for the LBM–MRT model.

We remarks that LBM suffers from dispersion errors for the three physical modes. The dispersion error increases as the
number of point per wavelength (related to the adimensional wavenumber) decreases. Comparing these results with these of
DVBE, we can say that the dispersion introduced by the lattice Boltzmann models is only due to the space and time discret-
ization. This means that the velocity discretization does not influence the plane wave dispersion. Moreover, it should be no-
ticed that MRT and BGK models have exactly the same dispersion error. Fig. 5 shows the evolution of the dissipation for the
lattice Boltzmann models with the previous parameters.
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In the MRT model, the bulk viscosity can be controlled independently with a different relaxation time. In a classical way,
LBM–MRT models are built with a high value of the bulk viscosity to ensure a better stability. Indeed we observe a higher
dissipation of the acoustic modes for the LBM–MRT model (Fig. 5) whereas the dissipation of the shear mode remains the
same for LBM–MRT and LBM–BGK. As in the dispersion relation, it should be noticed that the dissipation error level is intro-
duced by the space and time discretization.

Here, a rigorous comparison has been performed between BGK and MRT model. We have pointed out that the MRT model
was not adapted for acoustic simulations, because of the high value of bulk viscosity, introducing higher acoustic dissipation.
In the following, we will consider only the LBM–BGK model for the comparison with Navier–Stokes high order schemes.

3.3.4. Numerical simulations
We have performed numerical simulations to test the LBM accuracy and its dispersion and dissipation. For the compu-

tation we used the L-BEAM code based on the D3Q19 LBM–BGK model and coded with double precision [19]. In all the sim-
ulations, we use a uniform cubic grid of 803 meshes with periodical boundary conditions. The viscosity is set to
m ¼ 1:510�5 m2=s and Dx ¼ 1:25 cm, which induces a relaxation time sg ¼ 0:5000061. To test the accuracy, we simulate a
3D pressure pulse and estimate the L2 norm:
L2 ¼
1
N

XN

i¼1

pth
i � pnum

i

� �2 ð41Þ
where N is the number of points along the pulse and pith represents the analytical solution given in [12] by
p0ðx; y; z; tÞ ¼ e
2a

ffiffiffiffiffiffiffi
pa
p

Z 1

0
n2exp � n2

4a

" #
cosðc0tnÞJ0ðngÞdn ð42Þ
with e ¼ 10�3;a ¼ ln 2=b2
p ;g ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� U0tÞ2 þ y2 þ z2

q
and J0 is the spherical Bessel function of first kind and order 0. The bp

parameter represents the resolution of the pulse (i.e
ffiffiffiffiffi
bp

p
Dx meshes along the pulse length). In order to minimize the bound-
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Fig. 6. L2 norm evolution with the spatial resolution.
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ary influence, the simulation is stopped when the pulse reaches the limit of the computational domain. The error norm is
computed for different values of bp. The evolution is plotted on Fig. 6.

The curve has a slope of 2.16 which corresponds to the numerical accuracy of LBM. This observed result is in good agree-
ment with the theoretical 2nd order of the LBM.

Then, we have simulated a propagating acoustic wave in a periodical domain without mean flow to verify the dispersion
and dissipation highlighted in the previous section. The computational domain corresponds to one wavelength in the prop-
agating direction with five meshes in the other directions (5� 5� Nppw meshes). The boundary conditions are periodic and
the acoustic wave travels along the x-direction. To have significant effects of dispersion and dissipation, we use 50,000 time-
steps for the simulations. Here, we estimate the numerical sound speed variation with the resolution (numerical dispersion)
and the viscosity variation (numerical dissipation). Fig. 7 compares these evolutions with the theoretical dispersion and dis-
sipation relations presented on Figs. 4a and 5a. The theoretical evolution of sound speed is obtained by R½x��=k and the vis-
cosity by �I½x��=k2.

The numerical simulations match perfectly the theoretical curves and validate the approach used to study the dispersion
and dissipation relations. We can note here that for four points per wavelength (kDX ¼ p=2), the sound speed is correct to
93% and the viscosity to 97.5%.

4. Comparisons

We can now compare the dispersion and dissipation errors of the LBM–BGK scheme and the Navier–Stokes high-order
schemes. In order to compare it rigorously, we have to find a good comparison criteria. This criteria will be the error com-
mitted on Reðx�Þ and Imðx�Þ, function of the wavenumber. It can be written in the form:
ErrRðkÞ ¼ jR½x�ðkÞDt� �R½xthðkÞDt�j
ErrIðkÞ ¼ jI½x�ðkÞDt� � I½xthðkÞDt�j

(
ð43Þ
where * refers to the solutions of Eqs. (12), (38) and (39), and th refers to the exact solutions (13) and (40). These criteria will
be computed for the same CFL number. The lattice Boltzmann models allow only one value of the CFL number given by
CFLLBM ¼ 1=

ffiffiffi
3
p

which corresponds to the non-dimensional sound speed ~c0. This value will be chosen for the Navier–Stokes
schemes. Moreover the viscosity coefficient has to be carefully chosen to match the real simulated viscosity in lattice Boltz-
mann scheme and in classical scheme. In lattice Boltzmann simulations, the adimensional viscosity is given by ~m ¼ ~c0

2~s and
in classical schemes by ~m ¼ m Dt

Dx2. This enforces the relaxation time to be ~s ¼ mCFL
Dx ~c0

2c0
¼ m

ffiffi
3
p

c0Dx for the comparison.
Figs. 8 and 9 compare dispersion and dissipation errors in lattice Boltzmann schemes and Navier–Stokes cases 1, 2 and 3.

First, we can note that the LBM dispersion is between a global second order scheme and an optimized third order in space
with a 3-step Runge–Kutta in time. Although lattice Boltzmann method is a 2nd order accurate method, it has better disper-
sion capabilities than the classical 2nd order Navier–Stokes schemes. However, these results depend on the considered
mode. For example, the LBM shear mode dispersion is very close to the optimized third order of Tam and Webb (Fig. 9). Then,
we can note that for kDX P 3p=4 (i.e under 2.6 points per wavelength), LBM has a dispersion error below all the Navier–
Stokes schemes. This is due to centered finite-differences scheme which is not resolved for two points per wavelength
(R½xðkDX ¼ pÞ� ¼ 0). In a general way, we note a dissymmetry in the dispersion and the dissipation for a non-zero mean
flow: the acoustic mode (+) is generally more dispersed than the acoustic mode (�) whereas this one is more dissipated than
the (+) one. Moreover, dissipation results are clearly in the lattice Boltzmann favor. Even if the shear mode exhibits higher
dissipation than the optimized 6th order Navier–Stokes schemes, the acoustic modes are clearly less dissipated with LBM.
The large dissipation of the high order schemes is introduced by the Runge–Kutta algorithm.
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So, we have shown that for iso-CFL and a same adimensional viscosity, LBM had better dispersion and dissipation capa-
bilities than a 2nd order Navier–Stokes schemes. Now, to fully compare both discretization methods, the number of opera-
tions must be taken into account. Indeed, as presented previously, the lattice Boltzmann algorithm is very simple compared
to the high order algorithms. We will focus here on the dispersion error for the acoustic mode+with a mean flow, which is the
most unfavourable case for the LBM scheme. The number of operation Nop for each scheme must be computed for the same
physical time T and depends on the CFL number and on the number of points per wavelength Nppw:
Nop ¼
Tc0

Dx
N1Nppw

CFL
ð44Þ
where N1 is the number of operation done during one iteration. A rigorous method to compare the speed of each scheme,
consists in evaluating the number of operations necessary to achieve a given tolerated dispersion error. This number de-
pends on the ratio between Nppw and the CFL number. For the lattice Boltzmann scheme, because the CFL number could
not be changed, the ratio is determined by the number of points per wavelength (Table 2).

For the classical schemes, the CFL number could be freely chosen and the minimum ratio r ¼ Nppw=CFL should be taken to
minimize the number of operation (44). It appears that the minimum ratio is obtained for the greatest CFL. However, this one
is limited by the stability condition. For example, it has been shown [30] that for CFL values greater than 1, the DRP schemes
could become unstable because of the explicit centered spatial discretization. Indeed, the CFL number is the direct ratio be-
tween the physical propagation speed c0 and the phase speed of the scheme u/ ¼ Dx=Dt. For explicit schemes, a CFL > 1 im-
plies c0 > u/ and the acoustic information cannot be propagated correctly. Consequently, for our study, we will consider
CFL ¼ 1 as a maximum value. (Table 2) sums up the informations relative to the minimum ratio r for each cases. Finally,

we can compute the real ratio R ¼ NLBM
op

NNS
op

between the number of operation made by the LBM and the classical schemes to reach

a given tolerated dispersion error Table 3.
A ratio R < 1 means that the LBM is less expensive that the classical scheme and is found for all the tested cases excepted

for case 2 with a tolerated error of 0.01% which corresponds to a ratio of 1.62. However, this ratio decreases fastly with CFL
and reach the value of 0.99 for a CFL of 0.98. Thanks to these results, we can say that for a dispersion error greater or equal to
0.01%, the lattice Boltzmann scheme needs less FLOP than the classical finite-differences schemes. This shows that the lattice
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Table 2
Smallest ratio r ¼ Nppw=CFL for a dispersion error of 1%, 0.1% and 0.01%.

NS Case 1 NS Case 2 NS Case 3 LBM

N1 711 2862 11295 588
CFL 1.0 1.0 1.0 0.57
r1% 16.70 4.94 3.97 12.79
r0:1% 35.9 6.68 5.10 27.36
r0:01% 78.5 7.95 11.22 59.13
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Boltzmann method contains intrinsic and serious aeroacoustic capabilities and could achieve reliable results with few
operations.



Table 3
Ratio for the number of operation between LBM and classical schemes for a dispersion error of 1%, 0.1% and 0.01%.

R ¼ NLBM
op

NNS
op

Case 1 Case 2 Case 3

R1% 0.63 0.72 0.17
R0:1% 0.63 0.91 0.28
R0:01% 0.62 1.62 0.27
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5. Conclusion

In this paper, we have studied the plane wave dispersion and dissipation for two kinds of discretization of the 3D line-
arized and isothermal Navier–Stokes equation: The lattice Boltzmann models and the high order schemes. A Von Neumann
analysis of the isothermal and linearized Navier–Stokes equation has been made to reach the exact plane-wave solutions.
The same analysis has been made on the discretized equations and the lattice Boltzmann models to get the dispersion
and dissipation of the fully discrete Navier–Stokes equations and the different lattice Boltzmann schemes. The error terms
of the lattice Boltzmann models and its influence on the dissipation has been clearly identified. The study of the LBM–BGK
and the LBM–MRT models has highlighted the dispersion similarity of these models and the higher acoustic dissipation of
the MRT model. However, the comparison between the different results has highlighted the low dissipative capabilities of
the lattice Boltzmann models compared to the high order schemes. Even, if the lattice Boltzmann methods is of course more
dispersive than the optimized high order schemes, it can be set between a second order scheme in space with a 3-step Run-
ge–Kutta in time and an optimized third order with a 3-step Runge–Kutta algorithm. Finally, it has been shown that for a
given dispersion error, the Lattice Boltzmann method was faster than the high order schemes. This study does not take into
account stability problems. Low-dissipative schemes are often unstable and different solutions exists to damp the instabil-
ities. We have seen for the LBM–MRT model that increasing the stability could lead to higher acoustic dissipation. The imple-
mentation of selective spatial filters in the lattice Boltzmann method will be part of our future work [25] and could lead to a
better compromise between dissipation and stability.
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Appendix

Here are the definition of the different matrices used in the paper.

(1) For the linearized Navier–Stokes equation:
ME ¼

u0 1 0 0 0
0 u0 � ð43 mþ nÞ @

@x ð23 m� nÞ @
@y ð23 m� nÞ @

@z 1

0 �m @
@y u0 � m @

@x 0 0

0 �m @
@z 0 u0 � m @

@x 0
0 c2

0 0 0 u0

0BBBBBB@

1CCCCCCA

MF ¼

v0 0 1 0 0
0 v0 � m @

@y �m @
@x 0 0

0 ð23 m� nÞ @
@x v0 � ð43 mþ nÞ @

@y ð23 m� nÞ @
@z 1

0 0 �m @
@z v0 � m @

@y 0

0 0 c2
0 0 v0

0BBBBBBB@

1CCCCCCCA

MG ¼

w0 0 0 1 0
0 w0 � m @

@z 0 �m @
@x 0

0 0 w0 � m @
@z �m @

@y 0

0 ð23 m� nÞ @
@x ð23 m� nÞ @

@y w0 � ð43 mþ nÞ @
@z 1

0 0 0 c2
0 w0

0BBBBBB@

1CCCCCCA
where c0 is the sound speed defined by: c2

0 ¼ c p0
q0

.

MNS ¼ kxME þ kyMF þ kzMG
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(2) For the discretized linearized Navier–Stokes equations:
MNS
d ¼ Iþ

Xp

j¼1

cjðCFLÞjKj

K ¼ �Dx
c0
½DxME þ DyMF þ DzMG�

where Dx,Dy,Dz are the derivative operators given by Eq. (8).

(3) For the discrete velocities Boltzmann equation:
MDVBE
ab ¼ 1

s
½dab �

@f eq
a

@fb
jfb¼f ð0Þ

b
� þ ik:cadab
(4) For the lattice Boltzmann BGK equation:
MBGK ¼ A�1 Id� 1
sg

NBGK
� �

Aab ¼ eik:ca dab

NBGK
ab ¼ dab �

@geq
a

@gb

jgb¼gð0Þ
b

(5) For the lattice Boltzmann MRT equation:
MMRT ¼ A�1½Id� P�1SNMRTP�

NMRT
ab ¼ dab �

@meq
a

@mb
jma¼m0

The coefficients of P and S are given in [10]. Because the MRT model must recover the BGK model for S ¼ 1
sg

I, the equal-
ity of MMRT and MBGK leads to:

NMRT ¼ PNBGKP�1 ð45Þ
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