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The lattice Boltzmann method is used in fluid mechanics since the end of the 90’s.
Recently some papers have been published about LBM used in flow acoustics. Because
the LBM scheme is a weakly compressible one, we can access aerodynamics and acoustics
information using one simulation. The purpose of this work is to study the behavior of
this information through the LBM and the discrete velocity Boltzmann equation (DVBE).
A von Neumann analysis leads us to a modal decomposition of the scheme providing the
dispersion and dissipation relation for the shear and propagation modes. We show that
in the limit of small Knudsen number, the DVBE dispersion relation and dissipative co-
efficients perfectly match the theoretical expressions found by Chapman-Enskog analysis.
On the other hand, time and space discretization imposed by LBM, introduce a variation
of the dispersion relation depending on the wavenumber. The above results are perfectly
matched to numerical computations obtained with a 3D code based on the D3Q19 velocity
model. An analysis is made on the MRT model with a compressible distribution function.
We show that this model does not improve the dispersion relation but can modify the
dissipation to improve stability.

I. Introduction

The Lattice Boltzmann method is used in fluid mechanics simulation since the end of the 90s.1 In order
to access the capabilities of this method for aeroacoustic purposes, we have developed a 3D LBM code called
L-BEAM (Lattice Boltzmann Equation for Aeroacoustic Modeling), based on the D3Q19 velocity model.
Because the Lattice Boltzmann scheme is a weakly compressible one, we can access all the information using
one simulation12.7 What we pointed out here, is the propagation part of the scheme, that is to say the
behavior of a simulated sound wave in terms of energy and phase. After a brief introduction to the Lattice
Boltzmann model construction, we first study the accuracy of the scheme on a simple test case to quantify
the influence of space and time discretization. Then we focus on the theoretical aspects of the Lattice
Boltzmann scheme in terms of dispersion and dissipation. By this study, we want to quantify the acoustic
accuracy of the different models known in the literature.

II. Global accuracy of LBM

II.A. Lattice Boltzmann Model

It can be shown1 that the Boltzmann equation with the BGK collision operator can recover the Navier-Stokes
equations. From this equation and by taking a finite number of discrete velocities, we can obtain the discrete
velocity Boltzmann equation:
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∂fα

∂t
+ cα,i

∂fα

∂xi
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τ
(fα − feq

α ) (1)

The so-called lattice Boltzmann equation can be obtain from Eq.(1) with a space and time discretization
and a variable change given by:5

gα(x, t) = fα(x, t) +
∆t

2τ
(fα(x, t) − feq

α (x, t)) (2)

then we obtain the Lattice Boltzmann equation on gα:

gα(x + cα∆t, t + ∆t) = gα(x, t) − ∆t

τg
(gα(x, t) − geq

α (x, t) + O(∆t3) (3)

with τg = τ +
1
2

and geq
α , the equilibrium distribution function of the form:

feq
α (x, t) = geq

α (x, t) = ρωα(1 +
u.cα

c2
+

(u.cα)2

2c4
− |u|2

2c2
) (4)

where c =
1√
3

is the adimensional sound speed for the D3Q19 velocity model and the macroscopic quantities

ρ and u can be expressed in the form:

ρ =
∑
α

fα =
∑
α

gα (5)

ρu =
∑
α

cαfα =
∑
α

cαgα (6)

What we can pointed out here is the error due to space and time discretization in Eq.(3). This error can
be easily observed on a simple numerical test case.

II.B. Accuracy of the LBM scheme

To study the accuracy of the scheme, we simulate a 3D gaussian pulse in a periodic domain which propagatesin
the air. The analytical solution of this problem is well known9 and can be written as:

ρ′(x, y, z, t) =
ε

2α
√

πα

∫ ∞

0

e
−

ξ2

4α cos(c0tξ)J0(ξη)ξ2dξ (7)

with η =
√

(x − u0t)2 + y2 + z2 and ε, bp the initial amplitude of the pulse and the adimensional wave-
length respectively. Then we can compute the numerical error between analytical and numerical solution by
evaluating the L2 norm for different resolutions:

L2 =
1
N

N∑
i=1

(pth
i − pnum

i )2 (8)

Fig(1(b)) show the evolution of the L2 norm for two kind of real number coding. The first curve is
obtained with simple precision and the other one with the commercial code PowerFLOW based on the same
velocity model but coded in simple precision. We can see that in the case of simple precision the slope of the
L2 norm decreases for high resolution. For high resolution, a higher number of timesteps is used to keep the
same physical time, in this case, the round-off error due to simple precision is accumulating. For the double
precision case, the slope of 2.15 is in good agreement with the theoretical second order convergence rate of
the LBM scheme.1
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Figure 1. (a) Numerical and analytical solutions of the gaussian pulse for 10 points per wavelength (b) Evolution of
the L2 norm with the resolution.

III. Theoretical behavior

Now, the idea is to study the Boltzmann scheme theoretically to understand the behavior of sound waves.
The first thing to do, is to look for plane wave solutions of the scheme. We will proceed to a von Neumann
analysis to achieve such a result. This approach has been applied to Lattice Boltzmann scheme first by L.S
Luo.10 His approach was based on successive approximation in k. The idea is here to proceed differently by
doing a direct numerical computation of the solutions using a linear algebra library.

III.A. Von Neumann analysis

The von Neumann analysis consists in looking for plane waves solutions of the linearized equations. Here we
look for solutions of the form:

f ′
α = Aαexp(k.x − ωt) (9)

To linearize the equation, we first have to consider the distribution functions as a mean part f0
α and a

fluctuating part f ′
α, and then to linearize the nonlinear terms. These terms are contained in the equilibrium

distribution function (Eq.4). By using a Taylor expansion of this function, we can write:

feq(f (0)
α + f ′

α) = feq,(0)
α +

∂feq
α

∂fβ

∣∣∣
fβ=f

(0)
β

f ′
α + o(f ′

α
2) (10)

Thanks to Eq.(10) we can express the governing equations (1) and (3) in terms of fluctuating part f ′
α. Let’s

see now the behavior of the solution for the different equation.

III.B. The Discrete Velocity Boltzmann Equation

By injecting (9) and (10) in Eq.(1), the DVBE can be rewritten as:

iωf ′ = MDVBEf ′ (11)

with f ′ the vector of the distribution functions (f ′
1, ..., f

′
N ) and MDVBE a matrix defined by:

MDVBE
αβ =

1
τ

[
δαβ − ∂feq

α

∂fβ

∣∣∣
fβ=f

(0)
β

]
+ ik.cαδαβ (12)

Eq.(11) is nothing else that an eigenvalue problem in which iω are the eigenvalues of matrix MDVBE. The
coefficients of matrix MDVBE depend on three parameters which are, the relaxation time τ , the direction of
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propagation holds by vector k[kx, ky, kz] and the mean flow U0[U0x , U0y , U0z ]. The evaluation and simpli-
fication of the matrix coefficients can be done with Maple, particularly for the second term of Eq.(10), the
explicit coefficients are given in Appendix. The solutions of the problem given by Eq.(11) can be calculated
numerically with Matlab. This equation tells us that the evolution of the eigenvalues λα of MDVBE are
equivalent to the evolution of the pulsation ω(k). Moreover, by proceeding to a Chapman-Enskog expansion
of Eq.(11), it can be shown,11 that the eigenvalues λα of matrix MDV BE can be linked to the transport
coefficients as follow:

Im[λ±
α (k)] = −Re[ω±(k)] = ∓k[c(k) ± U0(k)] (13)

Re[λ±
α (k)] = Im[ω±(k)] = −k2[

1
2
ν(k) + ξ(k)] (14)

Im[λT
α(k)] = −Re[ωT (k)] = −kU0(k) (15)

Re[λT
α(k)] = Im[ωT (k)] = −k2ν(k) (16)

where ξ =
1
2
ν in the D3Q19 model, ± denotes acoustic modes and T is related to shear modes. Thus, by this

result, we get the dispersion and dissipation relation with Re(iω) = Re(λα) and Im(iω) = Im(λα). Fig.(2)
shows the evolution of the different modes for k = [kx, 0, 0],τ = 0.0025 and U0 = [0.12, 0, 0].
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Figure 2. Real and Imaginary part evolution of MDVBE eigenvalues compared to the theoretical curves

Only three modes out of 19 seem to be physical ones. On the real part (dispersion relation), we can recognize
the two acoustics modes which match the theoretical curve ω = k(U0 + c0) and the shear mode ω = kU0.
These modes are found again on the imaginary part (Dissipation relation) and match the curve of the
dissipation due to the air viscosity. Considering these results, the DVBE seems to be exact for acoustic
dispersion and dissipation. In fact, by studying the influence of the parameter τ , a larger error occurs for
high values of the relaxation time (i.e high values of the Knundsen number). The main idea to point out
here, is that in the limit of small Knundsen number, the velocity discretization introduce no error in the
behavior of sound waves. We now have to considerate the Lattice Boltzmann Equation to study the influence
of space and time discretization.

III.C. The Lattice Boltzmann Equation

We consider here, the Lattice Boltzmann Equation, which contains space and time discretization. The
propagation behavior of this scheme has been studied for a linear equilibrium distribution function. We can
show that for the particular case of linear LBM with τ = 0, the LBM is equivalent to TLM (Transmission
Line Matrix) and that the D2Q4 model predicts the same dispersion results than TLM.8

For the nonlinear LBM, the von Neumann analysis of Eq.(3) with ∆t = 1 leads to the expression:
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e−iωg′ = MLBMg′ (17)

with the new matrix MLBM = A−1[I − 1
τg

NLBM] where I is the identity matrix and A and NLBM defined by:

Aαβ = eik.cαδαβ (18)

NLBM
αβ = δαβ − ∂geq

α

∂gβ

∣∣∣
gβ=g

(0)
β

(19)

We obtain a new eigenvalue problem containing exponential terms. The only difference between Eq.(11)
and Eq.(17) is the space and time discretization. Now the adimensional wavenumber vector k represents the
number of points per wavelength by:

k̃ = k∆x =
2π

Nppw
(20)

In the following, the limit of k̃ = π will corresponds to 2 points per wavelength. The relation between
eigenvalues and transport coefficients (Eqs.(13,14,15,16) still the same, replacing λα by lnλα.
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Figure 3. Real and imaginary part evolution of the eigenvalues for LBM.

Considering the same case than in III.B, we can plot (Fig.3) the evolution of the transport coefficients with k
and compare it to their theoretical ones. It appears clearly, that the space and time discretization introduce
an error in the evaluation of dispersion and dissipation. We can recognize the same physical modes than in
III.B but with a different behavior. The sound speed is underestimated which induces a delay in the wave
propagation, and the viscosity is overestimated for the shear modes but underestimated for the shear modes.
These results are recovered with the numerical computation. We have simulated a plane wave in a periodical
domain for different resolution with the D3Q19 model. Fig.4 compares the evolution of the sound speed
for theoretical and numerical results done with L-BEAM and PowerFLOW. The numerical results match
perfectly with the above prediction.

III.D. The Multiple Relaxation Time model

The multiple relaxation time model,36 has been presented recently and is an alternative to the standard BGK
model. The idea is not to present this model in details but to resume the main features for our purposes. The
MRT model presents a different relaxation time for each momentum. We have to define as much momentum
as discrete velocities, which introduce a correspondence matrix P transforming distribution function vector
into momentum ones. By this way, the collision step of the algorithm must be done in the momentum space,
whereas the propagation step is done in the physical space. The relaxation time in the collision term of
Eq.(1) is then replaced by a diagonal matrix S containing the different relaxation times. This model allows
us to control independently the relaxation of the different moments. The equation of such a model can be
written as:
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Figure 4. Evolution of sound speed with the resolution for U0 = 0. cnum corresponds to the simulated wave speed and
the theoretical speed c(k). c0 is the speed of sound in the air.

g(x + c, t + 1) = g(x, t) − P−1S[m(x, t) − meq(x, t)] (21)

where m is the momentum vector such as m = P f and S defined as follow:

S = diag[
1
τ1

, ...,
1

τN
] (22)

In classical MRT model the equilibrium distribution function is quite different than its Eq.(4) form. It could
be written as:

feq
α (x, t) = ωα

[
ρ + ρ0(

u.cα

c2
+

(u.cα)2

2c4
− |u|2

2c2
)
]

(23)

which is similar to an incompressible model.2 From this, the classical MRT model evaluate vector meq with:

meq = P feq (24)

This kind of incompressible model has been studied in the literature.4 In this work, we will study the acoustic
behavior of the MRT model with an equilibrium distribution function defined by Eq.(4). Applying relation
(10) to m the von Neumann analysis of Eq.(21) leads to the new eigenvalue problem:

e−iωg′ = MMRTg′ (25)

with the new matrix MMRT = A−1[I − P−1SNMRTP ] where NMRT defined by:

NMRT
αβ = δαβ − ∂meq

α

∂mβ

∣∣∣
mα=m0

(26)

Because the MRT model must recover the BGK model for S =
1
τg

I, the equality of Eq.(17) and Eq(25) leads

to:

NMRT = PNLBMP−1 (27)

According to this result, we can solve the eigenvalue problem (25), just by knowing S and P . The coefficients
of P and S are given in the literature.6 The relaxation times are chosen in order to control separately the
bulk and shear viscosity. The evolution of the MRT modes are presented on Fig(5).
It is important to note that the MRT model gives the same evolution for dispersion relation than the
BGK model. The differences are in the dissipation relation, because we can control momentum relaxation
independently, we can control acoustic dissipation and shear dissipation independently. We will see in the
following that it can be helpful for stability problem.
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Figure 5. Real and Imaginary part evolution of the eigenvalues for the MRT model.

III.E. Stability

Until now, we have considered a propagation along the x direction (k = [kx, 0, 0]). Let’s see now, the
influence of the propagation direction. We introduce new parameters which are the angles φ and θ of the
spherical coordinates as illustrated on Fig(6).

Figure 6. Spherical coordinates for vector k.

By studying the influence of φ, θ and U0 on the eigenvalues of the different matrix M , we notice that in
certain cases, these eigenvalues become negatives (Fig.7), denoting a non-isotropy of the scheme.

(a) (b)

Figure 7. Repartition of min(ln λα).(a) Isosurfaces of negatives eigenvalues. (b) Visualization for the plane V = 0.16

In terms of stability, this means that the simulation becomes unstable. Let’s now focus on a particular case
to see the evolution of the modes in such a situation. Considering an unstable configuration taken from
Fig.7, the dispersion and dissipation analysis allows us to highlight some particular behavior. Fig.8 shows
that the eigenvalues become negative on a small interval of high k value. On the dispersion curve (real part),
we see that the acoustic and shear modes become very close. We can interpret this as an energy transfer
between the two modes involving a negative dissipation (i.e energy gain). But to make the energy transfer
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possible, the modes could be able to see each other, which is not possible with linear phenomenon. Actually,
this could be explained by a non-normality condition of the discrete velocity basis, induced by the fact that
M is a full matrix.
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Figure 8. Real and Imaginary part evolution of the eigenvalues for LBM with U0 = 0.16, θ = 20.6 and φ = 45.8.
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Figure 9. Real and Imaginary part evolution of the eigenvalues for MRT with U0 = 0.16, θ = 20.6 and φ = 45.8.

If we compare the behavior of the different model (BGK Fig.(8), MRT Fig.(9)), we notice that the MRT
model is more stable than the BGK one. This is due to the overdissipation of the acoustic modes in the
MRT model. Indeed, the acoustic mode dissipated by the bulk viscosity, is less energetic when it is coupled
with the shear mode, so that the eigenvalues still positives. So, it is important to show that, if the MRT
model allows us to control independently acoustic modes and shear mode, the stability problem leads us to
control the acoustic modes in a dissipative way which is not suitable for aeroacoustic computations.

IV. Conclusion

In this paper, we have studied the LBM scheme for acoustic purposes. By studying the accuracy of the
scheme, we have pointed out the global error due to space and time discretization and seen its effects on
acoustic propagation. We have shown that the von Neumann analysis made on a compressible scheme could
give us information about dispersion and dissipation. By studying the MRT model, we have seen that the
bulk viscosity could be controlled independently but that its effects on acoustic waves were not convenient
for acoustic purposes. The stability study has shown that the different modes could interfere, involving
unstable situations. It appears clearly that the LBM models have to be a compromise between stability and
dissipation. The fact that both problems have something to do with viscosity, leads us to think to an other
way to increase stability. These considerations will be parts of our future work.
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8 P.O Lüthi, Lattice wave automata, PhD. Thesis, Université de Genève, 1998
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