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Abstract

In this study, a new selective filtering technique is proposed for the Lattice Boltzmann Method. This technique

is based on an adaptive implementation of the selective filter coefficient σ. The proposed model makes the latter

coefficient dependent on the shear stress in order to restrict the use of the spatial filtering technique in sheared stress

region where numerical instabilities may occur. Different parameters are tested on 2D test-cases sensitive to numerical

stability and on a 3D decaying Taylor Green vortex. The results are compared to the classical static filtering technique

and to the use of a standard subgrid-scale model and gives significant improvements in particular for low-order filter

consistent with the LBM stencil.
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Introduction

The Lattice Boltzmann Method [1][2] (LBM) is nowadays recognized as a fast and reliable method to simulate the

dynamics of weakly compressible flows. Some studies [3, 4, 5, 6] have shown the capabilities of LBM to perform

complex and multi-physical simulations from turbulent flows to aeroacoustic applications thanks to the low dissipation

error introduced by the method. As a counterpart, LBM suffers from numerical instabilities when Reynolds number

becomes high.

The origins of LBM instabilities have been actively studied and remains an open subject [7, 8, 9, 10]. The

main consequence of the inherent LBM instability is to create diverging oscillations mainly characterized by high

frequencies which propagate in the whole domain. These numerical instability waves are often generated by unadapted

initial conditions, geometric singularities or in region where high gradients are observed. In industrial applications,

several of these numerical constraints are present, thus computations often become dramatically unstable.

Numerous studies have proposed stabilization techniques based on different approaches such as multiple relaxation

times [11], regularization techniques [12], energy conserving [13], entropic models or positivity enforcing [14]. The

vast majority of these models consists in a theoretical modification of the LBM scheme and gives relevant informations

about the unstable nature of LBM. As a counterpart, lots of stabilizing strategies have a global effect on the viscosity

thus modifying the effective Reynolds number or increasing the global dissipation of the method. This dissipation

inherent to the construction of more stable schemes can impact the evaluation of pressure fluctuations whose accuracy

is crucial (e.g. for aeroacoustic simulations). In that case a local strategy would be preferred in order to distinguish

spatial zones where a stabilization is required to those in which the standard LBM scheme can be applied.

Ricot et al.[15] proposed to use selective spatial filters[16] to stabilize the method by increasing the dissipation

in the high wavenumber range where the LBM instabilities occur, keeping a low dissipation at small wavenumbers.

This approach can be applied to aeroacoustic simulations by maintaining an acceptable level of dissipation error at
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low wavenumbers. However, this method basically applies to the whole domain and becomes unavailing outside of

sheared regions where numerical instabilities have less chances to develop. Furthermore, the use of high-order filters

increases the stencil of LBM which is low by nature and leads to a loss of locality of the method which is penalizing

for massively parallel computations. Finally, from a dynamical point of view, the selective spatial filters have never

been tested on transition situation where the time evolution prediction is of major importance for the accuracy of the

results. Therefore, the need for a local and adaptive stabilization procedure is relevant and should be carried out, in

particular in the framework of the Lattice Boltzmann Method.

The idea of the present study is to propose an improved filtering strategy restricted to highly sheared regions [9]

keeping weakly sheared ones free of artificial dissipation. The choice of the shear stress as a segregation parameter is

highly motivated by the large eddy simulation framework where the shear stress sensitivity is of crucial importance

in the construction of subgrid-scale models [17, 18]. Moreover, this study can be included in the framework of other

local approaches where additional numerical treatment is done in restricted zones of interest [19, 20, 21]. Therefore

the present study aims at introducing a shear-stress selectivity in the application of spatial filtering. The proposed

strategy is developed in the framework of the Lattice Boltzmann Method and applied to unsteady test-cases highly

sensitive to numerical dissipation.

After a brief presentation of the Lattice Boltzmann model in section 2, the new filtering strategy is described

in section 3 and validated in sections 4, 5 and 6 on 2D and 3D test-cases with some comparisons to the traditional

filtering techniques. Finally, section 7 is dedicated to computational cost issues.

Lattice Boltzmann Method

The Lattice Boltzmann method[1] is described by the following algorithm:

gα(x + cα∆t, t + ∆t) = gα(x, t) −
1

τg

[gα(x, t) − g
eq
α (x, t)] (1)

where gα are distribution functions computed on a regular velocity lattice cα, colliding and relaxing to a local equilib-

rium g
eq
α with a relaxing parameter τg =

ν

c̃2
0

+
1

2
where ν and c̃0 are the nondimensional viscosity and speed of sound

respectively. In this study, we use the D2Q9 and D3Q19 models for 2D and 3D simulations. The classical parameters

of the model are defined as follows:

g
eq
α (x, t) = ρωα(1 +

u.cα

c̃2
0

+
(u.cα)

2
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− |u|
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∆t =
c̃0∆x

c0

(4)

The macroscopic quantities ρ and u can be computed from the distribution functions with the discrete moments:

ρ =
∑

α

fα (5)

ρu =
∑

α

cα fα (6)

The pressure is recovered by the relation:

p = c̃2
0ρ (7)
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Based on these parameters, it can be shown [2] that LBM simulates the compressible Navier-Stokes equations in

the limit of low Mach numbers with a second-order accuracy in space and time.

Adaptive selective spatial filters

As proposed by Ricot et al [15], the stability of LBM can be enhanced by space-filtering the moments of eq.(5) and

(6). Spatial filtering of a quantity Q is defined by subtracting a weighted combination of the symmetric neighboring

points in each direction:

〈Q(x)〉 = Q(x) − σ
D
∑

j=1

N
∑

n=−N

dnQ(x + n∆x j) (8)

where σ is a coefficient between 0 and 1, often taken to 0.1, dn are coefficients depending on the filter order and D is

the number of spatial dimensions. In this study, classical 3-point, 5-point stencil and optimized 9-point stencil filters

are used [16]. The coefficients of the filters are given in table 1.

d0 d1 d2 d3 d4

3-point 1/2 −1/4

5-point 6/16 −4/16 1/16

9-point (optimized [16]) 0.243527493120 −0.204788880640 0.120007591680 −0.045211119360 0.008228661760

Table 1: Coefficients of the selective filters: dn = d−n.

Different filtered quantity can be chosen according to the LBM scheme with the following possibilities with in-

creasing computational cost:

1. Filtering moments: ρ,u (D + 1 tables).

2. Filtering distribution functions: gα (Nv tables).

3. Filtering collision operator: − 1

τg

(gα − g
eq
α ) (Nv tables).

where D is the number of physical dimensions and Nv is the number of discrete velocities. In order to limit computa-

tional cost, the first solution will be preferred in this study and the influence of the filtered quantity will be discussed

in section 6.

In the wavenumber space, Ricot et al. [15] have shown by a linear stability analysis that the explicit filtering

introduce an additional dissipation linked to the coefficient:

κ(k) = 1 − σF (k) (9)

where F (k) is the transfer function of the explicit filter as a function of the wavenumber vector k. Then the global

efficiency of such a filter is led by both F (k) and σ. The idea of this study is to make the coefficient σ of relation (8)

dependent on the shear stress. For instance, let us consider σd(x) to be of the form:

σd(x) = σ0

(

1 − e−(|S (x)|/S 0)2
)2

(10)

where |S | =
√

2S i jS i j and σ0 is the static filter amplitude. S 0 is a reference shear stress amount defining a sensitivity

from which the dynamical filter starts to be active. The quantity |S | is evaluated in the Lattice Boltzmann framework,

from the second order moment:

τi j = 2ρνS i j = −
∑

α

cα,icα, j(gα − g
eq
α ) (11)

which gives:
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|S | = Qf

2ρν
(12)

with Qf =
√

2Pi jPi j and Pi j =
∑

α cα,icα, j(gα−g
eq
α ). Relation (12) is often used for the implementation of subgrid-scale

models in the Lattice Boltzmann Method [22, 23] and does not require any derivative computations.

Thenceforth, a crucial point relies in the estimation of the sensitivity shear stress S 0. When the shear stress is low

(|S | < S 0), the filter has no effect (σd ∼ 0) and when the shear stress rises to higher values (|S | > S 0), the filter acts

normally (σd ∼ σ0). Then S 0 can be seen as a shear sensitivity parameter and is of major importance in the dynamical

filtering efficiency. If S 0 is chosen smaller than the minimum amount of shear stress (S min), the filter coefficient σd

will be close to σ0 in the whole domain and the adaptive filter will behave like a classical static filter. Conversely, if

S 0 is chosen higher than the maximum amount of shear stress (S max), σd will be very low in the whole domain and the

adaptive filter will have almost no effect. Consequently, the present methodology becomes efficient for intermediate

values of S 0: S min < S 0 < S max. Its influence is sketched up in figure 1.

Adaptive Filter No FilterStatic filter

S maxS min
∞

S 0

Shear selectivity

Global dissipation

0

Figure 1: Shear stress sensitivity

In this study S 0 is evaluated in terms of the maximum amount of shear stress: S 0 = ξS max where ξ is a selectivity

parameter close to unity and S max can be evaluated by two different ways:

1. Computed value: evaluation of max(|S |) at each timestep based on instantaneous or mean field.

2. Imposed value: Imposed constant value at initialization based on physical, numerical or empirical criteria.

The first type of estimation has a straightforward implementation and implies that the maximum value of σd

remains close to a constant in time: σd = σ0

(

1 − e−(1/ξ2)
)2

and could be used if the aim is to control the overall

dissipation induced by the filter.

The second type of estimation imposes a fixed amount of shear stress from which the filter will be active. In that

case, the time evolution of the effective stress would lead to a time evolution of the filter coefficient σd. A first basic

criterion for the estimation of S max can be based on the ratio between a velocity scale U and a length scale δ:

S max =
U

δ
(13)

Equation (13) is evaluated at initialization step based on the prescribed simulation parameters.

Another way to evaluate S max can be based on a numerical criterion assessing the positivity of the distribution

function gα as a numerical stability criterion [24]. Indeed, assuming that the quantities gα must be positive, an upper

limit can be found for relation (12) by substituting gα with zero and considering the second-order moment:

∑

α

cα,icα, jg
eq
α = ρuiu j (14)

which yields:

|S | = Qf

2ρν
=

√

2
∑

α cα,icα, jg
eq
α

∑

α cα,icα, jg
eq
α

2ρν
≤
√

2uiu j

2ν
(15)
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Then S max ensuring the stability condition can be written from (15) by only keeping the leading term of the linearized

uiu j:

S max =

√
2U2

0

2ν
∼ ReδU0

δ
(16)

where δ is the characteristic length scale. It should be noticed that, by construction, relation (16) is given in lattice units

and implicitly contains the mesh size information. Indeed, in dimensional units, relation (16) would be multiplied by

1/∆t which depends on ∆x (see relation (4)). Thus for coarse grids, relation (16) will give smaller value of S max than

for fine grids, which is consistent with stability issues.

In the following, the proposed adaptive filtering procedure is studied on illustrative test cases with different eval-

uations of S max following the nomenclature presented in table 2.

Simulation name Fs F0
ad

F1
ad

F2
ad

type Static Adaptive Adaptive Adaptive

S 0 0 ξmax(|S|) ξS max ξS max

S max × Computed Imposed by (13) Imposed by (16)

Table 2: Reference names used for the simulations

First, a convected 2D vortex is used to characterize the influence of the present filtering strategy on the local dis-

sipation, then the flow past a square cylinder is investigated to demonstrate the stabilizing capabilities of the adaptive

filtering and finally, the simulation of a 3D decaying Taylor-Green vortex is performed to demonstrate the effectiveness

of the present filtering on a fully 3D turbulent flow.

Application to a 2D convected vortex

Test case implementation

The 2D convected vortex is a simple test case which is used here to characterize the effects of the adaptive filter on

the dissipation of a simple coherent structure. For this configuration, the amount of shear stress is maximum near the

vortex boundary where the filter is expected to be active, leaving the vortex centre free of artificial dissipation.

In the purpose of characterizing the amount of numerical dissipation induced by the present methodology, the

computations are performed for an inviscid vortex by setting the relaxation time to 0.5 (e.g. ν = 0). The Mach number

is set to M∞ = 0.1 and the initial field is defined as follows :
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(17)

with (x0, y0) = (nx/2, ny/2), ε = 10−3 and bp = 20. The grid (nx, ny) is set to 256 × 128 points with periodic boundary

conditions and the number of time-steps is chosen so as to achieve at least ten vortex crossings of the domain.

Results and discussions

For this test case, only the low-order 3-point filter is considered and the static filter coefficient is set to σ0 = 0.1.

Different estimations of S 0 are tested summarized in table 2. The F0
ad

estimation is based on the computation of

S max = max(|S|) at each timestep, F1
ad

imposes a value of S max based on (13) with U = εU0 and δ = bp and F2
ad

imposes S max from (16).
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Figure 2: (a) Evolution of the maximal amplitude of the vortex kinetic energy at each crossing of the domain. (b) Time trace of the normalized

kinetic energy at the centre point location after the last crossing of the domain. (—): Without filtering, (-·-): Fs , (—): F0
ad

, (- -): F1
ad

, (-•-): F2
ad

.

Thin lines to thick lines are for ξ = 0.5, ξ = 1.0 and ξ = 1.5.

Figure 2 shows the time evolution of the kinetic energy computed at the centre point of the domain for various

values of ξ. The classical filtering procedure with a constant coefficient σ = 0.1 is also added for comparison.

When the filter acts with the same amount in the whole domain (classical filter) the introduced dissipation has

damped the major part of the initial kinetic energy confirming that the classical low-order filter is too dissipative when

applied in the whole domain. Figure 3 represents the isocontours of σd at a given timestep for different estimations

of S 0 and different values of ξ. As expected, non-zero values of σd are concentrated near the vortex boundary and

reach null values in the vortex centre. The results indicate less dissipation from the F2
ad

estimation based on relation

(16) because the imposed value of S max is never reached and σd remains small all along the vortex convection for all

considered values of ξ. Indeed, the convected vortex is numerically stable and instability waves are not observed for
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Figure 3: (—) Isocontours of density and (—) isocontours of σd = 0.1σ0 after 13200 timesteps. (a-c) F1
ad

with ξ = 0.5,1.0 and 1.5. (d-f) F0
ad

with

ξ = 0.5,1.0 and 1.5.
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this test case which implies that the filter is almost never active.
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Figure 4: Time trace of the maximum value of the coefficient σd . (—): Without filtering, (-·-): Fs , (—): F0
ad

, (- -): F1
ad

, (-•-): F2
ad

. Thin lines to

thick lines are for ξ = 0.5, ξ = 1.0 and ξ = 1.5.

For low values of ξ the shear selectivity of the adaptive filter is weak and the behaviour is close to the one obtained

with the classical filters. The F1
ad

estimation induces high values of σd at initialization due to the similarity between

the imposed S max and the local shear stress. When the vortex is convected, its energy is dissipated by the filter inducing

a decrease of the shear stress then leading to a reduction of the filter coefficient as depicted in figure 4. Then the filter

impact becomes weaker when the local stress is lower than the imposed threshold value. On the other hand, the F0
ad

estimation induces high level of dissipation because the threshold value S max is computed from the local shear stress

and gives higher value of σd when the shear stress is low. The filter effect in this case remains constant in time, as

illustrated in figure 4 and gives highly dissipated results after ten crossings of the domain.

These observations show that the numerical dissipation introduced by the filter can be controlled by the shear stress

selectivity. The F0
ad

and F1
ad

estimations lead to dissipated results because of the under-estimation of S max whereas the

F2
ad

estimation shows a good ability to switch off the filter if instability waves are not detected. Then in the following,

only the F2
ad

estimation will be retained and will now be studied in the context of numerical stability issues.

Application to the flow past a square cylinder

Test case implementation

In this section we are considering the flow past a 2D square cylinder which is known to exhibits some strong numerical

instabilities for Reynolds numbers larger than 500. The computations are performed on a uniform 500 × 200 points

grid with a 10 × 10 points solid square located at (xs, ys) = (100, 100). Wall boundary conditions are implemented

with the classical bounce-back method to ensure a null velocity at the wall, and periodic boundary conditions are used

at the domain boundary with a sponge zone at the outlet in order to damp outgoing structures. The sponge zone has a

Gaussian shape and is defined by:

ν

ν0
= α exp

[

− ln(2)

m2
(x − p)2

]

(18)

For this study, the parameters have been fixed to, α = 200, m = 50 and p = nx − 75 meaning that the viscosity

start to increase from ν0 to 200ν0 in the last 100 grid points of the domain. The Reynolds based on the square side is

ReD = 800 and the Mach number is set to M∞ = 0.25. For these parameters, the classical LBM-BGK method becomes

highly unstable and leads to collapsing computations. Consequently some artificial dissipation must be added to damp

instability waves.
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Here, the present filtering strategy is tested and compared to the classical static filter for the 3-point stencil filter.

In this study, the quantities at the wall are not filtered but the 3-point filter allows the close-neighboring points of

the wall quantities to be filtered normally. However, as discussed in [21], the use of explicit filtering near the wall

is conditioned by a relatively high wall-resolution. For the present test-case, the wall resolution is set intentionally

coarse in order to exhibit numerical instability. Then the present adaptive technique is expected to modify the near-

wall quantities where a high shear stress is detected yielding a high value for the filter coefficient.

For this test-case, the σ0 parameter is set to 0.1 and the F2
ad

estimation is used for different values of ξ and

compared to the classical static filter.

Results and discussions

The isocontours of vorticity displayed in figure 5 show that the classical low-order filter is too dissipative and leads

to a laminar flow without vortex shedding. This confirms that these kind of low-order filter should not be applied

for unsteady simulations. In contrast, the present adaptive filtering technique exhibits unsteady flow with identified

vortex shedding in the cylinder wake. All the value of ξ give similar wakes with a slight delay in the establishment of

the vortex shedding for the lowest value of ξ due to a too high dissipation close to the wall. These observations are

confirmed by looking at the drag and lift coefficient of table 3 which are slightly underestimated as ξ is decreased due

to the use of near-wall filtering with low resolution.

Cmean
d

Crms
l

ξ = 0.5 0.825 0.08

ξ = 1.0 0.831 0.09

ξ = 1.5 0.837 0.10

Table 3: Comparison of the average drag coefficient Cmean
d

and rms lift coefficient Crms
l

for different values of xi.
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Figure 5: Isocontours of vorticity from −0.02 to 0.02 in lattice unit at time= 2000 timesteps. Dashed contours denotes negative values. (a) 3-point

classic filter, (b) 3-point adaptive filter with ξ = 0.5, (c) ξ = 1.0 (d) ξ = 1.5.

By plotting the time evolution of σd at a wall point and a wake point in figure 6, we can see that the highest

values of σd are reached near the wall where the shear stress is maximum. For the low value of ξ, σd is fluctuating

around 60% of σ0 near the wall whereas for the high value of ξ, σd is fluctuating around 1% of σ0. From the signal



S. Marié et al. / Journal of Computational Physics 333 (2017) 212–229 220

of the wake point, it could be inferred that σd remains smaller than 1% of σ0 for both value of ξ except for ξ = 1.5

after 2000 timesteps. For this value of ξ, the simulation is close to the stability limit and oscillations are visible for

high values of the shear stress. This phenomenon is observed in the vicinity of contra-rotative vortices which are

getting very close to each other. An instability wave is created but the filter coefficient is not high enough to damp

this instability. However, when the instability is developing, higher shear stress is detected and the filter coefficient is

increased to 80% of σ0 in few timesteps. Then the instability wave is damped and the filter coefficient decreases to

very low values.
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Figure 6: Time trace of filter coefficient σd at (a)(xc , yc) = (100, 105) and (b)(xc, yc) = (230, 85). (—: Fs), (−· − F2
ad

: ξ = 0.5), (- -: ξ = 1.0) and

(—: ξ = 1.5).

These observations confirm the adaptive nature of the presented filtering strategy and show that low-order filters

can be applied to unsteady flows if they are restricted to localized zones based on a shear criterion. Moreover, the

estimation of S max used for this test case gives relevant results in terms of stability control and demonstrates the ability

of the adaptive filters to be an efficient stabilization procedure for the Lattice Boltzmann method.
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Application to a 3D Taylor Green Vortex

Test case implementation

In order to study the effect of the present filtering technique on a 3D turbulent configuration, the decaying Taylor-

Green vortex (TGV) is used. It is a fundamental test case used as prototype for vortex stretching and production of

small-scale eddies and therefore allows the study of the dynamics of transition to turbulence. This test-case has been

widely used to study the dissipation errors of numerical schemes [25]. In particular, Aubard et al. [26] have recently

used this test-case to confront the selective filtering techniques to the use of subgrid-scale models.

The initialization of the Taylor-Green vortex is done by setting velocity and pressure variables as follows:
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w = 0

(19)

In order to reduce numerical oscillations at the beginning of the simulation, the distribution functions gα are

initialized to their equilibrium state with an additional non-equilibrium part based on the Chapman-Enskog micro-

scale expansion [27].

For this study, the simulations are performed on a 2π-periodic cubic domain with a Reynolds number of Re = 1600

based on a physical characteristic length of Lre f = 1m:

Re =
U∞Lre f

ν∞
=

Ũ∞Lre f

∆xν̃∞
(20)

where .̃ quantities denotes lattice unit quantities.

The Mach number is taken to M∞ = 0.085 and ρ∞ = 1 fixing the other parameters to Ũ∞ = 0.049 and p̃∞ = 1/3

in lattice unit. The relaxation parameter is set with the Reynolds number to τg =
Ũ∞Lre f

∆xc̃2
0
Re
+

1

2
.

The filter coefficient is here computed with F2
ad

estimation of S max based on relation (16) and different values of ξ

are tested. Different filter types are also compared to analyze the influence of the filtering order on the flow dynamics.

For the validation of this test case, the spectral data from Brachet et al. [28] are used and compared to our reference

simulation on a 2563 grid.

Results and discussion

A reference simulation is performed on a 2563 grid without any filtering technique. Figure 7 displays the evolution of

Q-criterion in the domain. The classical behavior of the Taylor-Green vortex is observed, the initial field gives rise to

large vortices which are then stretched and lead to the production of small-scale eddies and decaying turbulence.

In the following, a series of tests are performed to characterize the present filtering strategy. First, the influence

of the grid resolution on the non-filtered scheme is presented, then the influence of parameters σ0 and S 0 in equation

(10) are scrutinized and finally, comparisons with static filtering strategy and subgrid-scale model are performed.

Grid sensitivity

The lattice Boltzmann method is a second-order accuracy scheme in space and time. In the literature, few studies have

been published on the validation of the 3D Taylor-Green vortex with LBM simulations [29]. It is thus interesting to

see the capabilities of the standard LBGK scheme to simulate the dynamics of a 3D decaying vortex. For that purpose,

the evolution of the kinetic energy dissipation rate ǫ = −∂tk is scrutinized for various resolutions from 643 to 2563

and compared with the spectral simulation of Brachet et al. [28] in figure 8. In the following, the time is normalized
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Figure 7: Isosurface of the Q-criterion colored by kinetic energy at time t = 0,t = 4,t = 10,t = 16 for Re = 1600 on a 2563 grid.

with respect to the quantity Lre f /U∞. The dissipation rate is computed with a second-order centered finite-difference

approximation.

The TGV dynamical evolution is characterized by three main steps visible in the time trace of ǫ. First, the initial

laminar state is transitioning to turbulence until the stretched vortex tubes break down into small scales around t = 5.

Then the dissipation rate is rising to a sharp peak near t = 9 corresponding to the fully turbulent state which is then

decaying similarly to an isotropic and homogeneous turbulence.

The results of the classical LBM simulations without any filtering technique are displayed in figure 8. The ref-

erence simulation on a 2563 grid is seen to be in very good agreement with the spectral results. The 1283 grid gives

satisfactory results for the transition region but the peak in the dissipation rate is not properly captured and the decay-

ing phase starts too early. The 643 and 963 simulations give rise to numerical instability at different time. The 963

grid simulation exhibits a relatively good transition to turbulence but collapses just before the peak of dissipation is

reached around t = 8. Finally, the 643 grid simulation collapses earlier around t = 5, when the stretched vortex tubes

break down into small scales.

Thus, the LBM scheme shows a good ability to simulate the Taylor-Green vortex dynamics when using fine grids

but is limited by its inherent instability for coarser grids and high Reynolds numbers. Therefore the use of a stabilizing

strategy becomes a crucial point to investigate turbulent simulations with the Lattice Boltzmann Method.
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Figure 8: Non dimensional time evolution of the dissipation rate ǫ. (• spectral data), (... 643), (- - 963), (−· − 1283) and (— 2563)

Influence of σ0 and ξ

As described in section 3, the dynamical filtering strategy is sensitive to two main parameters which are σ0 and ξ.

The first one determines the filtering amplitude when the shear stress is high and could be seen as the efficiency of the

filter. The latter one plays the role of shear stress selectivity and is essential for controlling the dissipation amount of

the filtering technique as described in the previous sections. The sensitivity to these parameters is investigated on a

963 grid for various values of σ0, ξ and the different selective filters presented in table 1.

A first sensitivity analysis is performed on the σ0 parameter with a fixed value of ξ = 1. Results are reported in

figure 9-left and exhibit relatively similar behaviour. A high value of σ0 induces more damped results, in particular

after the vortex breakdown near t = 5 when the filter order is low. On the other hand, better results are obtained for

low σ0 values. This improvement is particularly visible for the 3-point filter which can fairly reproduce the vortex

breakdown around t = 5 when σ0 is set to 0.01. Lower values of σ0 have been tested but lead to unstable simulations.

This suggest that the dynamical filtering strategy should be applied for values of σ0 as low as possible in the limit of

stability. By looking at figure 9-right where the time evolution of σd is represented, one can see that the value of σ0

has a direct impact on the time evolution of σd. Indeed, when σ0 changes, the filtering amount is modified and so

is the shear stress which modifies the local σd value. Moreover, for higher values of σ0 the maximum value of σd

is never reached suggesting that the filtering amount induces lower shear stress and in turn reduces σd. On the other

hand, when σ0 is low, the filtering amount allows larger shear stress values then increasing σd close to its maximum

value fixed by σ0. However, these considerations depend also on the shear stress selectivity which is driven by the

value of S 0.

The second sensitivity analysis is performed on the parameter ξ which controls S 0 and for a fixed value of σ0 =

0.05. Results are reported in figure 10-left which shows that the selected ξ values have an important impact on the

results. A lower sensitivity induces an earlier filtering activity which damps the initial laminar state and lead to a

wrong dissipation rate evolution. Indeed, results of figure 10-right indicate that σd starts to increase from a non

zero value for low sensitivity parameters. In contrast, when the sensitivity is high, the filter does not act in low

sheared region and is activated only when large vortices have broken up and small-scales structures are developing

to turbulence. Moreover it could be seen from figure 10 that the effect of the filter order is reduced when increasing

the sensitivity. Indeed, 3-point filter results are close to those of the 9-point filter when sensitivity is high. This is an

important outcome in terms of computational cost suggesting that the filter order could be reduced when increasing
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Figure 9: Influence of the σ0 parameter. Left: Non dimensional time evolution of the dissipation rate. Right: Time trace of the maximum value of

the normalized coefficient max[σd(x)]/σ0 . (a): 3-point, (b) 5-point and (c)9-point filters. (— Reference simulation on 2563) (−· − σ0 = 0.01), (—

σ0 = 0.05) and (- - σ0 = 0.1)

sensitivity. These considerations can be recast in the turbulence framework where large-scale structures are known

to be more energetic. The global dissipation of the present adaptive filtering can be described by equation (9) with a

coefficient σ(k) dependent of the wavenumber. Indeed, the shear stress amount is expected to be higher for large and

energetic structures in a turbulent flow such as Taylor-Green vortex. Then the coefficient σ(k) acts as a selectivity

enhancement through the term σ(k)F (k). For the present study, the frequency repartition of σ(k) is imposed by the

flow through S i j but it is possible to design specific σ(k) for LES purposes.

These tests have also emphasized the important role played by the couple (σ0, ξ) on the simulation of a 3D

decaying Taylor-Green vortex. In the following simulations, this couple will be set to (0.05, 1.).
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Figure 10: Influence of the parameter ξ. Left: Non dimensional time evolution of the dissipation rate. Right: Time trace of the maximum value of

the normalized coefficient max[σd(x)]/σ0 . (a): 3-point, (b) 5-point and (c)9-point filters. (— Reference simulation on 2563) (−· − ξ = 0.5), (- -

ξ = 1.0) and (— ξ = 1.5)

Influence of the filtered quantity

As discussed in section 3, the filtering procedure can be applied to three different quantities which are basically the

distribution functions gα, the whole collision operator − 1
τg

(gα − g
eq
α ) or the first moments ρ and ρu. The filtering of

the gα quantities is done after the propagation step, the filtering of the collision operator is done between the collision

and the propagation steps and the filtering of the macroscopic quantities is done after their computations.

Figure 11 compares the influence of the filtered quantity on the dissipation of the kinetic energy for the present

test-case. The observed differences indicate a weak dependence on the filter order and the better results are obtained

for the filtered moments. Moreover, this latter choice induces a lower cost because only four quantities are filtered in

three-dimensional simulations whereas the two other choices require the filtering of nineteen quantities. Therefore,
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Figure 11: Comparison of the filtered quantity on a 963 domain with σ0 = 0.05 and ξ = 1.0:(— Reference simulation on 2563 . Red, blue and

green curves refers to 3-point, 5-point and 9-point filters respectively.) −· − filtered collision operator, - - filtered distribution functions, — filtered

moments.

the following computations will be performed with filtered moments.

Comparison with static filters

The static filtering technique could be seen as a particular case of the dynamical one when the sensitivity is set to

zero (S 0 = 0). Therefore, static filters act everywhere with the same amount, with potential damping of important

structures in the dynamical evolution. With the above discussion, the static filtering technique is thus expected to

give over-dissipated results. This is confirmed by looking at figure 12 which displays the comparison of static and

dynamical filtering on a 963 grid (left) and a 1283 grid (right).
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Figure 12: Comparison between static filters (solid lines) and dynamical filters (dashed lines) on a 963 domain (left) and a 1283 domain (right).

Red, blue and green curves refers to 3-point, 5-point and 9-point filters respectively.

A striking result is observed for 3-point stencil filter which gives completely wrong behaviour with a static strategy

whereas results close to higher order filters are observed for the dynamical strategy. This is particularly apparent in

the transition region where the 3-point dynamical filter gives better results than the static 5-point filter and similar

results as the static 9-point filter. Moreover, the dynamical filtering appears to better predict the dissipation peak
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around t = 9 than the static filters. The above discussions thus indicate that the results can be severely improved by

increasing the filtering sensitivity and decreasing the σ0. This behaviour suggests that the wavenumber selectivity of

the spatial filters plays a minor role compared to the shear stress selectivity. Indeed, the results indicate that applying a

high-order wavenumber selectivity on non-sheared quantities (i.e. with static filters) could lead to an over-dissipation

in the transition region. As a counterpart, by introducing a shear-stress dependency on the filters, the wavenumber

selectivity is forced to act on turbulent quantities with an important shear amount which corresponds to large-scale

structures on which the wavenumber selectivity has no impact and could be reduced by decreasing the filter order.

This result is of major importance in the framework of lattice Boltzmann method showing that relevant results could

be obtained with a 3-point stencil selective filter which correspond to the LBM stencil, then conserving the locality of

the scheme which is important when dealing with highly parallel implementations (see section 7).

Comparison with SGS models

The LBM implementation of subgrid-scale model is very close to the one of the present dynamical filtering. Relation

(12) is used to estimate the eddy viscosity and thus the relaxation time τg. The comparison between the implementa-

tion of the classical Smagorinsky model and the present methodology is presented in figure 13 with the Smagorinsky

model associated to a constant Cs = 0.1 and Cs = 0.18. The results indicate that the SGS implementation appears

to be too dissipative and describes poorly the laminar-turbulent transition region. Similar observations are detailed in

Aubard et al. [26] where various SGS strategies have been compared and found to be not suitable for this transition

test case.
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Figure 13: Comparison between dynamical filtering strategy and subgrid-scale model on a 963 domain (left) and a 1283 domain (right). –– reference

simulation, –– present filtering with 3-point filter, −− SGS with Cs = 0.18, −· − SGS with Cs = 0.1.

The present dynamical strategy is found to better predict the transition region by filtering only the sheared region.

The main difference between the present implementation and the SGS methodology relies in the amount of filtering

when shear stress is lower than the imposed sensitivity (S < S 0). Indeed for those values the filter have no impact

and let the turbulent structures free of numerical dissipation. Contrariwise, the SGS implementation is directly pro-

portional to the amount of shear stress and the eddy viscosity has a non zero value for shear stress amount close to S 0

thus imposing an over-dissipation for the corresponding structures which are of primary importance for the dynamical

evolution. Moreover, the SGS approach is not a bounded procedure and the eddy viscosity can reach arbitrary high

value when highly sheared region are encountered whereas the presented strategy is limited by the σ0 value restricting

the numerical dissipation to a limited amount. Finally, from a general point of view, the SGS strategy could be seen

as the present dynamical filtering technique with a low shear stress sensitivity and should be linked to the results of

section 6.2.2.

Computational cost

The lattice Boltzmann method is a simple, fast and local scheme which is often used for HPC simulations. Therefore

computational cost issues are fundamental when introducing artifacts to the standard scheme. For the present filtering
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strategy the overcost is held by the computation of relation (10) at each timestep. The comparison of the different

computational cost for 2D and 3D simulations are presented in table 4. The 2D computational times refer to the test

case of section 5 and the 3D computational times refer to the test-case of section 6 for a 1283 grid. In this section,

the present filtering technique is applied on the moments of the distribution functions. The present inhouse code is a

set of Python modules with a time loop wrapped in Fortran-90 (f2py). All the computational time refers to a single

standard processor (Intel Xeon CPU W3565 3.20GHz) and are given in µs/point/iterations.

Models D2Q9 D3Q19

Standard 0.147 0.516

Filters classical Filters present Filters classical Filters present Filters

3-point 0.178 (+21%) 0.185 (+26%) 0.564 (+09%) 0.588 (+14%)

5-point 0.184 (+25%) 0.190 (+29%) 0.571 (+10%) 0.598 (+16%)

9-point 0.192 (+30%) 0.199 (+35%) 0.586 (+14%) 0.614 (+19%)

Table 4: Computational costs of the present filtering strategy

First, the results indicate that the overcost due to filtering is higher for 2D simulations than for 3D simulations.

This can be explained by the number of discrete velocities involved in D2Q9 and D3Q19 models. For 2D simulations

the collision and propagation steps are done on 9 velocities and the filtering of the moments are done on 3 quantities

which represents 33% of the velocity number. For 3D simulations, the filtering is done on 4 quantities which represents

21% of the 19 velocities. Then, the overcost of the present filtering technique due to the computation of relation (10),

is relatively small with an additional time of 5% in 3D compared to classical filters. This overcost must be seen in

the HPC framework where communication time is of major importance. Indeed, it has been shown in the previous

sections that low-stencil adaptive filter results was comparable and more stable than high stencil classical filter. These

results demonstrate the ability of the present filtering technique to be used for massively parallel computations where

the overcost of computing σd will be damped by the gain of scalability induced by low communications.

Conclusion

A dynamical filtering technique for the lattice Boltzmann method has been presented and tested on representative test-

cases in 2D and 3D. It has been shown that the use of selective spatial filters with a coefficient based on the amount of

shear stress led to improved stability and limited dissipation. In particular, it has been emphasized that the shear stress

selectivity was restricting the action of the filters to localized zones thus reducing the global amount of numerical

dissipation. The choice of shear stress selectivity has been motivated by the lattice Boltzmann framework for which

the shear stress is a relevant quantity that can be accessed with a minimum amount of additional computational time.

The results are particularly improved when the filter order is low, especially for the comparison with static selective

filters suggesting that the wavenumber selectivity is dominated by the one of the shear stress. The comparison of

the presented methodology to the classical subgrid-scale model methodology on a laminar-turbulent transition test

case such as the Taylor-Green vortex have also led to promising results highlighting the importance of shear-stress

selectivity in the prediction of the turbulence dynamical evolution. From a computational cost point of view, the

presented strategy have shown interesting capabilities when using low-order filters thus reducing the effective stencil

to the one of the LBM which is consistent with massively parallel simulations. Then the dynamical filtering strategy

should be seen as an enhanced stabilization procedure for the lattice Boltzmann method where the amount of numerical

dissipation is locally controlled in space. The next step will be to introduce a σd coefficient optimized in wavenumber

space for LES purposes.

Finally it could be noticed that the presented methodology could be applied to a wide variety of numerical prob-

lems where only local dissipation is required. Moreover, the presented procedure should be extended to different

physical problems by modifying the sensitive quantity and not restrict it to the shear stress. Furthermore, the pre-

sented dynamical filtering is not restricted to the Lattice Boltzmann method and could be applied to the classical finite

differences schemes.
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[5] S. Marié, D. Ricot, P. Sagaut, Comparison between Lattice Boltzmann Method and Navier-Stokes high order schemes for Computational

Aeroacoustics., Journal of Computational Physics. 228 (4) (2009) 1056–1070.

[6] A. Sengissen, J. Giret, C. Coreixas, J. Boussuge, Simulations of LAGOON landing-gear noise using Lattice Boltzmann Solver, in: AIAA-

paper 2015-2993, 2015.

[7] J. Sterling, S. Chen, Stability analysis of lattice Boltzmann methods, J. Comp. Phys. 123 (1996) 196–206.

[8] P. Lallemand, L. Luo, Theory of the lattice Boltzmann method: Dispersion, dissipation, isotropy, Galilean invariance and stability, Phys. Rev.

E 61 (06) (2000) 1–17.

[9] P. Dellar, Bulk and shear viscosities in lattice Boltzmann equations, Phys. Rev.E 64 (031203) (2003) 1–11.

[10] C. David, P. Sagaut, Structural stability of Lattice Boltzmann schemes, Physica A 444 (2016) 1–8.

[11] D. d’Humière, I. Ginzburg, Y. Krafczyk, P. Lallemand, L. Luo, Multiple relaxation time lattice Boltzmann models in three dimensions, Phil.

Trans. R. Soc. Lon. A 360 (2002) 437–451.

[12] J. Latt, B. Chopard, Lattice Boltzmann method with regularized pre-collision distribution functions, Mathematics and Computers in Simula-

tion 72 (2) (2006) 165–168.

[13] P. Lallemand, F. Dubois, Some results on energy-conserving lattice Boltzmann models, Computers and Mathematics with Applications 65 (6)

(2013) 831–844.

[14] F. Tosi, S. Ubertini, S. Succi, H. Chen, I. Karlin, Numerical stability of Entropic versus positivity-enforcing Lattice Boltzmann schemes,

Mathematics and Computers in Simulation 72 (2006) 227–231.
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