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Summary Despite there is an exponentially growing literature devoted to the LBM, the progress of LBM in studying turbulent flow is not 

fully satisfactory compared with its achievements in other aspects at present time. In this paper, we propose to extend the mapping 

technique to recover an IR consistent Smagorinsky model1 to the LBM framework. The decaying isotropic turbulence (DHIT) is selected 

as a test case. The objectives are to investigate the sensitivity of turbulence evolution upon the various Smagorinsky SGS models, the 

model coefficients and the grid resolution, and to validate the efficiency and the accuracy of LES-LBM.  

MATHEMATICAL FORMULATIONS 
The filtered lattice Boltzmann equation for LES is solved using single relaxation time approximation following Bhatnagar, Gross 

and Krook (BGK)2 as 
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Here, ( ),f tα x  is the distribution function at a node x  and time t  with particle velocity vector 
αe , and τ  is relaxation time. 

( )( ) ,ef tα x  in Eq. (1) is local equilibrium distribution function at each node: A cubic lattice model D3Q19 is used here to simulate 

the homogenous isotropic turbulence. The mass density ρ  and macroscopic local velocity u  are defined in term of the particle 

distribution function. The kinematic viscosity ν  depend on the lattice relaxation time.  

In LES-LBM, to implement IR consistent Smagorinsky model and the classical Smagorinsky model, an additive space and time 

variable relaxation time scale 
ττ  is introduced into the effective relaxation time 

wτ  and *
wτ , respectively.  
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The total effective relaxation time 
wτ  used in filtered LBE is calculated from Eq. (2a,b) once the Smagorinsky constant C , the 

lattice length unit 
LΔ  and the kinematic viscosity 

0ν  are given. 

RESULTS AND DISCUSSION 
We perform LES-LBM of decaying isotropic turbulence with both the classical Lilly-Smagorinsky model (results being denoted 

with “Lilly-1”(Cs=0.10) and Lilly-2”(Cs=0.18) in figures) and the IR consistent Smagorinsky model (denoted by “M&S-1” (Cs=0.10) 

and “M&S-2” (Cs=0.18) in figures). We also perform DNS-LBM to enable accurate comparisons.  

 

 

 

 

 

                            (a)                                             (b) 
Fig.1. The instantaneous three-dimensional energy spectra at (a) t =0.05 and (b) t=0.18 obtained from DNS-LBM (1923) and LES-LBM with different SGS 
models (Lilly and M&S). 
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Figure 1 displays the three-dimensional instantaneous energy spectra with different LES-LBM cases. The LES spectra are 

compared against DNS spectrum at the same time. The IR consistent model performs better than the other models in the different 

time. It also yields a better prediction of time evolution of the statistical quantities.  

Figure 2a and Figure 2b show the time evolution of total turbulent kinetic energy and the dissipation rate given by three 

LES-LBM cases and DNS-LBM. It is well known that the energy decay exponent is closely related to the low wavenumber portion 

of the three-dimensional spectrum, and is affected by many features of the initial spectrum as well as Reλ
. Saffman3 suggested that 

for DHIT the low Reynolds number exponent was shown to be 3/2, and the high Reynolds number exponent limit to be 6/5 which is 

commonly observed in experiments. Batchelor and Townsend 4 presented the first analysis and experiments for very low Reynolds 

number decaying turbulence and suggested that the exponent should be 5/2 in the final period of decay. 

 

 

 

 

 

                           (a)                                               (b) 
Fig.2a. The total turbulent kinetic energy at different resolutions using LES-LBM and DNS-LBM. Fig.2b. The dissipation rate at different resolutions using 
LES-LBM and DNS-LBM. 

The decay exponent law from present LES simulations is n ≈ 1.58, which is agree well with the both DNS results and is close 

to the value of Djenidi’s DNS5 ( n ≈ 1.53). Our results also close to Lavoie’s measurements6 which the total kinetic energy is 

proportional to 1.5t− . Figure 2b shows that the collapse of ε  predicted by both Smagorinsky models is really slower than the DNS 

value. The phenomenon corresponds to the evolution of energy spectrum in Fig. 1. The IR consistent models yield the results closer 

to the DNS ones. The decay exponent 1n +  is estimated to be 2.58 in our simulations 

CONCLUSIONS 

In the present paper, we extend the study of the decaying isotropic turbulence with large eddy simulation based on lattice 

Boltzmann Equation, and investigated the performance of the standard Smagorinsky model and the IR consistent Smagorinsky model. 

The results are assessed via comparisons with the theory and the experimental data as well as DNS data. A very encouraging result is 

that the well known decay exponents of the kinetic energy and the dissipation rate are reproduced. Other results are found to be 

consistent with simulations made by different numerical schemes and measurements of grid turbulence.  

Overall, the present study provides detailed numerical data and analysis against which such various subgrid-viscosity SGS 

models can be tested in the frame of LBM. We recall that LES-LBM is a potentially viable tool for study of turbulent flows and 

should be paid more attention to develop reasonable turbulence models.  
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