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The presence of porous layers around solid bodies modi-

fies the flow behavior at the solid-porous-fluid interface. In

nature, porous media are known for their flow regularization

properties (e.g. forest canopy, velvet-like feathers under bird

wings, ...) and the use of porous coatings at the surface of solid

obstacles immersed in a fluid flow has been employed across

several areas to change the flow dynamics. Modeling flows in

porous media therefore appears as a real issue to design and

simulate passive flow control strategies. In lattice Boltzmann

methods, the treatment of fluid flows in porous media can be

carried out with different types of boundary conditions. In

the present work, the Brinkman penalization method [1] is

used. This approach models the porous medium by adding

a forcing term including the porosity and the permeability

of the medium. The Brinkman penalization holds for the

whole domain, it is local and has a negligible computational

cost. This strategy, recently used with LBM to model complex

diffusion in porous media [2], has also been successively ap-

plied in the context of semi-Lagrangian vortex methods [5] for

the discretization of incompressible Brinkman-Navier-Stokes

equations. The present work therefore proposes a numeri-

cal comparison between two alternative and non-traditional

methods, namely a mesoscopic approach (the lattice Boltz-

mann method, denoted LBM in the following) and a hybrid

Eulerian-Lagrangian macroscopic one (the semi-Lagrangian

vortex method, denoted VM in the following), in their ability

and efficiency to simulate the flow around a porous body with

the Brinkman penalization technique. As enhanced by the

authors in [4], the LBM and VM methods belong to families

of methods where the flow is discretized in a non-macroscopic

way and where the notion of particles is a common aspect.

They therefore show structural similarities and have been also

shown in this study to present their own advantages, like the

low-dissipative and low-dispersive properties of the VM and

the high accuracy at fine grid resolutions and the convergence

order of LBM. Further comparisons of these two approaches

are here proposed in the context of porous flow simulations.

THE BRINKMAN PENALIZATION

The Brinkman penalization technique has been introduced

to model the presence of a porous body [7]. The idea is to add

a body force in the macroscopical equation set. This body

force takes into account the Reynolds number and the Darcy

number and writes. The adimensionalized formulation of the

forcing term is given by:

Fp = −
ϕ

ReDa
u (1)

where, ϕ, the porosity of the immersed body, has to be close to

1 [8]. This macroscopic formulation takes different implemen-

tation strategies for Vortex method and Lattice Boltzmann

Methods.

Implementation in the VM framework

In the VM context, we solve the incompressible Navier-

Stokes equations in their adimensionalized velocity(u) -

vorticity(ω) formulation. Adding the Brinkman penalization

forcing term in these equations gives the so-called penalized

Vorticity-Transport-Equation:

∂tω + (u · ∇)ω − (ω · ∇)u =
1

Re
∆ω +∇× Fp (2)

∆u = −∇× ω, (3)

Such equations allow to model the flow in the whole do-

main thanks to the dimensionless penalization coefficient

−ϕ/ReDa. Indeed, at a given Re number, varying the value

of Da thus directly defines the different media: in the fluid,

the permeability goes to infinity, thus the fluid can be con-

sidered as a porous media with infinite permeability meaning

that the penalization term vanishes. For regions with finite

values of Da, one models a porous medium in which the flow

has a Darcy velocity.

In the present VM framework, the system of equations (2)-

(3) is solved with a fractional step technique (where the diffu-

sive, convective and stretching effects are handled successively

within one time step) and by using a semi-Lagrangian ap-

proach where the convection of the vorticity field is performed

in a Lagrangian way and all the other substeps are resolved on

a grid using classical Eulerian schemes (FD, spectral) thanks

to the regular remeshing of the Lagrangian particles on the

grid. The resolution of the penalization equation ∂tω = ∇×Fp



is one of the fractional step of the global algorithm, and such

equation is solved on the grid with an implicit Euler scheme

for time integration and FD scheme for the discretization of

the curl operator :

ωn+1 = ωn +∇×
(
−λχ∆t un

1 + λχ∆t

)
(4)

Implementation in the LBM framework

The LBM model used for this comparison is based on the

D3Q19 incompressible formulation of the Multiple Relaxation

time [3]. The implementation of the MRT model is based on

a collision step done in the momentum space:

 mcoll = m− S(m−meq) + (1−
dt

2
)SMS

g(x, t) = M−1mcoll(x− cαdt, t− dt)

(5)

where the matrix M, transforms the distribution functions

g into moments m and meq is computed from the standard

second order equilibrium distribution function. The diagonal

matrix S contains the relaxation rates associated to each mo-

ments to optimize numerical stability [3]. The source term

S is computed according to the standard Guo formulation [6]

and include the body force (1):

Sα = ωα

[
cα − u

c20
+

(cα · u)cα
c40

]
· Fp (6)

Then the source term is included in the mesh concerned by

a porous body and are removed in the main flow mesh.

APPLICATION TO FLOW OVER A POROUS SPHERE

Figure 1: (a) Sketch of the flow configuration depending on

the permeability (Da). Xr denotes the penetration or detach-

ment length of the recirculation region and Lr denotes the

recirculation length (notation and sketch inspired from [9]).

(b) Computational domain.

The test case of the steady and axisymmetric flow past a

permeable sphere at Re = 200 is here chosen to validate the

Brinkman penalization implementation in the LBM and VM

frameworks and to compare the two approaches in terms of

numerical convergence, precision and ability to capture the

correct physics of such flow.

Concerning the expected physics, previous studies (e.g. [9])

demonstrated that, increasing the permeability (i.e. the Da

number) of the immersed body, the recirculation region first

penetrates inside the body (at the rear) and is then shifted

downstream and shrinked until it finally disappears for high

permeability values (see Fig. 1(a)).

Based on the very recent work of Ledda [9], used here

as a reference, we will validate our methods on the partic-

ular case of flow past a permeable sphere at Re = 200 with

Da = 10−3 and Da = 10−2, for which we expect to observe

the recirculation region entering the rear back of the sphere

with Da = 10−3 and its disappearing for Da = 10−2. The

direct numerical simulations will be performed in the physical

domain represented in Fig. 1(b) and a grid convergence study

will be carried out based on the following meshes:

G1 80× 32× 32

G2 160× 64× 64

G3 320× 128× 128

G4 640× 256× 256

G5 1024× 512× 512

Further simulations at higher Re numbers (Re ∼ O(103)) for

the sphere case will also be proposed for G5 resolution through

the two methods in order study more complex physics and to

envision the effects of permeability on chaotic wakes.
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